首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组(Ⅰ):α1,α2,…,αr线性无关,向量组(Ⅱ)可由向量组(Ⅱ):β1,β2,…,βs可由(Ⅰ)线性表示: βj=a1jα1+a2jα2+…+arjαr(j=1,2,…,s).证明:向量组(Ⅱ)线性无关矩阵A=(aij)r×s的秩为s.
设向量组(Ⅰ):α1,α2,…,αr线性无关,向量组(Ⅱ)可由向量组(Ⅱ):β1,β2,…,βs可由(Ⅰ)线性表示: βj=a1jα1+a2jα2+…+arjαr(j=1,2,…,s).证明:向量组(Ⅱ)线性无关矩阵A=(aij)r×s的秩为s.
admin
2018-07-27
42
问题
设向量组(Ⅰ):α
1
,α
2
,…,α
r
线性无关,向量组(Ⅱ)可由向量组(Ⅱ):β
1
,β
2
,…,β
s
可由(Ⅰ)线性表示:
β
j
=a
1j
α
1
+a
2j
α
2
+…+a
rj
α
r
(j=1,2,…,s).证明:向量组(Ⅱ)线性无关
矩阵A=(a
ij
)
r×s
的秩为s.
选项
答案
不妨设α
i
(i=1,…,r)及β
j
(j=1,…,s)均为n维列向量,则题设的线性表示或可写成矩阵形式: [β
1
β
2
…β
s
]=[α
1
α
2
…α
r
]A,或B=PA,其中B=[β
1
β
2
…β
s
]为n×s矩阵,P=[α
1
α
2
…α
r
]为n×r矩阵,且P的列线性无关.于是可证两个齐次线性方程组Bx=0与Ax=0同解:若Bx=P(Ax)=0,因P的列线性无关,得Ax=0;若Ax=0,两端左乘P,得PAx=Bx=0,所以Bx=0与Ax=0同解,[*]s-r(B)=s-r(A),[*]r(B)=r(A),[*](Ⅱ)线性无关[*](B)=s[*]r(A)=s.
解析
转载请注明原文地址:https://kaotiyun.com/show/ZWW4777K
0
考研数学三
相关试题推荐
设X1,X2,…,Xn,…相互独立且都服从参数为λ(λ>0)的泊松分布,则当n→∞时以Ф(x)为极限的是
证明n维列向量α1,α2,…,αn线性无关的充要条件是
若向量组α1,α2,α3线性相关,向量组α2,α3,α4线性无关,试问α4能否由α1,α2,α3线性表出?并说明理由.
如果秩r(α1,α2,…,αs)=r(α1,α2,…,αs,αs+1),证明αs+1可由α1,α2,…,αs线性表出.
设A为m阶正定矩阵,B为m×n阶实矩阵.证明:BTAB正定的充分必要条件是r(B)=n.
设二维非零向量α不是二阶方阵A的特征向量.证明α,Aα线性无关;
设A,B均为四阶方阵,r(A)=3,r(B)=4,其伴随矩阵分别为A*,B*,则r(A*B*)=________.
已知二维非零向量X不是二阶方阵A的特征向量.(1)证明X,AX线性无关;(2)若A2X+AX一6X=0,求A的特征值,并讨论A可否对角化.
已知A为三阶方阵,A2—A—2E=D,且0<|A|<5,则|A+2E|=________。
设A,B为同阶方阵。(Ⅰ)若A,B相似,证明A,B的特征多项式相等;(Ⅱ)举一个二阶方阵的例子说明(Ⅰ)的逆命题不成立;(Ⅲ)当A,B均为实对称矩阵时,证明(Ⅰ)的逆命题成立。
随机试题
油田生产单位要定期进行安全检查,基层队每()一次。
依照《行政复议法》的规定,对于行政行为不服的,可以自知道该具体行政行为之日起()内向复议机关提出复议申请。
下列选项中,属于无芽胞厌氧菌感染特征的是
高血压危象药物治疗可首选
中国收货人甲公司从国外购货,取得的提单上载明“凭指示”的字样,承运人为中国乙公司。当甲公司凭正本提单到港口提货时,被乙公司告知货物已不在其手中。后甲公司在中国法院对乙公司提起索赔诉讼。乙公司在下列哪种情形下不可免除交货责任?()
按支出用途分类,我国的财政支出共有()项,主要包括基本建设支出等。
在系统中设置单位信息时,如果企业类型选择了工业模式,则()。
(36)havegreetedQueenElizabethⅡassheappearedoutside(37)inapinksuitandhatonher80thbirthday.And(38)workingg
June15DearSir,Yourshipmentoftwelvethousand"Smart"watcheswasreceivedbyourcompanythismorning.However,wewi
Directions:Forthispart,youareallowed30minutestowriteacompositiononthetopic:DoesHeroismStillWork?Youshouldw
最新回复
(
0
)