首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组(Ⅰ):α1,α2,…,αr线性无关,向量组(Ⅱ)可由向量组(Ⅱ):β1,β2,…,βs可由(Ⅰ)线性表示: βj=a1jα1+a2jα2+…+arjαr(j=1,2,…,s).证明:向量组(Ⅱ)线性无关矩阵A=(aij)r×s的秩为s.
设向量组(Ⅰ):α1,α2,…,αr线性无关,向量组(Ⅱ)可由向量组(Ⅱ):β1,β2,…,βs可由(Ⅰ)线性表示: βj=a1jα1+a2jα2+…+arjαr(j=1,2,…,s).证明:向量组(Ⅱ)线性无关矩阵A=(aij)r×s的秩为s.
admin
2018-07-27
34
问题
设向量组(Ⅰ):α
1
,α
2
,…,α
r
线性无关,向量组(Ⅱ)可由向量组(Ⅱ):β
1
,β
2
,…,β
s
可由(Ⅰ)线性表示:
β
j
=a
1j
α
1
+a
2j
α
2
+…+a
rj
α
r
(j=1,2,…,s).证明:向量组(Ⅱ)线性无关
矩阵A=(a
ij
)
r×s
的秩为s.
选项
答案
不妨设α
i
(i=1,…,r)及β
j
(j=1,…,s)均为n维列向量,则题设的线性表示或可写成矩阵形式: [β
1
β
2
…β
s
]=[α
1
α
2
…α
r
]A,或B=PA,其中B=[β
1
β
2
…β
s
]为n×s矩阵,P=[α
1
α
2
…α
r
]为n×r矩阵,且P的列线性无关.于是可证两个齐次线性方程组Bx=0与Ax=0同解:若Bx=P(Ax)=0,因P的列线性无关,得Ax=0;若Ax=0,两端左乘P,得PAx=Bx=0,所以Bx=0与Ax=0同解,[*]s-r(B)=s-r(A),[*]r(B)=r(A),[*](Ⅱ)线性无关[*](B)=s[*]r(A)=s.
解析
转载请注明原文地址:https://kaotiyun.com/show/ZWW4777K
0
考研数学三
相关试题推荐
设A是n阶矩阵,若存在正整数k,使线性方程组Akx=0有解向量α,且Ak-1α≠0.证明:向量组α,Aα,…,Ak-1α是线性无关的.
设A,B都是m×n矩阵,则r(A+B)≤r(A)+r(B).
设4阶矩阵满足关系式A(E-C-1B)TCT=E,求A.
已知n阶行列式|A|=,则|A|的第k行代数余子式的和Ak1+Ak2+…+Akn=______.
设A是3阶实对称矩阵,A的特征值是6,-6,0,其中λ=6与λ=0的特征向量分别是(1,a,1)T及(a,a+1,1)T,求矩阵A.
设A为三阶实对称矩阵,A的每行元素之和为5,AX=0有非零解且λ1=2是A的特征值,对应特征向量为(一1,0,1)T.求A.
设A是三阶实对称矩阵,r(A)=1,A2一3A一0,设(1,1,一1)T为A的非零特征值对应的特征向量.求A的特征值;
已知二维非零向量X不是二阶方阵A的特征向量.(1)证明X,AX线性无关;(2)若A2X+AX一6X=0,求A的特征值,并讨论A可否对角化.
设方阵A1与B1合同,A2与B2合同,证明:合同。
设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B。(Ⅰ)证明B可逆;(Ⅱ)求AB—1。
随机试题
含毒性药物及贵重药物散剂制备药物量比例差别大的散剂制备
下列各项中,属于有限责任公司董事会行使的职权是()。
包销与房地产居、代理的区别有()。
()是利用建筑物内已有的设施进行逃生的正确做法。
背景材料:某高速公路上下行分离式隧道,洞口间距40m,左线长3216m,右线长3100m,隧道最大埋深500m,进出口为浅埋段,Ⅳ级围岩。洞身地质条件复杂,地质报告指出,隧道穿越地层为三叠系底层,岩性主要为炭质泥岩、砂岩、泥岩砂岩互层,且有瓦斯设
李清照:易安体下列选项中与这组词在逻辑关系上最为贴近,相似或匹配的是()。
国土资源直接反映一个国家的综合国力。()
在一个烟雾弥漫的早晨。农夫老张划着船逆流而上。突然间,他看见一条小船顺流直冲向他。眼看小船就要撞上他,他高声大叫:“小心!小心!”但是船还是直撞过来,他的船严重受损。于是他暴跳如雷。开始向对方怒吼。但是,当他仔细一瞧,才发现原来是条空船,因此气也消了。谈谈
SupposeyouareguidingagroupoftouristsaroundafamousscenicspotcalledFairylandIsland.Youaretointroducethefollow
AccordingtoNobel’sfamouswill,theinterestonhisfundwillbe______tofivepeoplewhohavemadegreatcontributionstoma
最新回复
(
0
)