首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3,α4都是n维向量.判断下列命题是否成立. ①如果α1,α2,α3线性无关,α4不能用α1,α2,α3线性表示,则α1,α2,α3,α4线性无关. ②如果α1,α2线性无关,α3,α4都不能用α1,α2线性表示,则α1,α
设α1,α2,α3,α4都是n维向量.判断下列命题是否成立. ①如果α1,α2,α3线性无关,α4不能用α1,α2,α3线性表示,则α1,α2,α3,α4线性无关. ②如果α1,α2线性无关,α3,α4都不能用α1,α2线性表示,则α1,α
admin
2019-05-14
24
问题
设α
1
,α
2
,α
3
,α
4
都是n维向量.判断下列命题是否成立.
①如果α
1
,α
2
,α
3
线性无关,α
4
不能用α
1
,α
2
,α
3
线性表示,则α
1
,α
2
,α
3
,α
4
线性无关.
②如果α
1
,α
2
线性无关,α
3
,α
4
都不能用α
1
,α
2
线性表示,则α
1
,α
2
,α
3
,α
4
线性无关.
③如果存在n阶矩阵A,使得Aα
1
,Aα
2
,Aα
3
,Aα
4
线性无关,则α
1
,α
2
,α
3
,α
4
线性无关.
④如果α
1
=Aβ
1
,α
2
=Aβ
2
,α
3
=Aβ
3
,α
4
=Aβ
4
,其中A可逆,β
1
,β
2
,β
3
,β
4
线性无关,则α
1
,α
2
,
α
3
,α
4
线性无关.
其中成立的为_______.(填序号即可)
选项
答案
①,③,④.
解析
①直接由定理即可得到.
②明显不对,例如α
3
不能用α
1
,α
2
线性表示,而α
3
=α
4
时,α
3
,α
4
都不能用α
1
,α
2
线性表示但是
α
1
,α
2
,α
3
,α
4
线性相关.
③容易用秩说明:Aα
1
,Aα
2
,Aα
3
,Aα
4
的秩即矩阵(Aα
1
,Aα
2
,Aα
3
,Aα
4
)的秩,而(Aα
1
,Aα
2
,
Aα
3
,Aα
4
)=A(α
1
,α
2
,α
3
,α
4
),由矩阵秩的性质④,
r(Aα
1
,Aα
2
,Aα
3
,Aα
4
)≤r(α
1
,α
2
,α
3
,α
4
).Aα
1
,Aα
2
,Aα
3
,Aα
4
无关.秩为4,于是α
1
,α
2
,α
3
,α
4
的秩也一定为4,线性无关.
④也可从秩看出:A可逆时,r(α
1
,α
2
,α
3
,α
4
)=r(Aα
1
,Aα
2
,Aα
3
,Aα
4
)=4.
转载请注明原文地址:https://kaotiyun.com/show/Zc04777K
0
考研数学一
相关试题推荐
设f(x)在[a,b]上连续,且f(x)>0,证明:存在ξ∈(a,b),使得∫aξf(x)dx=∫ξbf(x)dx.
设非零n维列向量α,β正交且A=αβT.证明:A不可以相似对角化.
设A=有三个线性无关的特征向量.求a;
设a,b为非零向量,且|b|=1,.
在上半平面上求一条上凹曲线,其上任一点P(x,y)处的曲率等于此曲线在该点的法线段PQ的长度的倒数(Q为法线与x轴的交点),且曲线在点(1,1)处的切线与x轴平行.
设S为平面x一2y+z=1位于第四卦限的部分,则=___________.
随机变量X的密度函数为f(x)=,则D(X)=_________.
设f(x)连续可导,导数不为0,且f(x)存在反函数f-1(x),又F(x)是f(x)的一个原函数,则不定积分∫f-1(x)dx=___________。
函数f(x,y,z)=x2+y3+z4在点(1,一1,0)处方向导数的最大值与最小值的平方和为___________。
试求函数y=arctanx在x=0处的各阶导数。
随机试题
服务器
马克思主义认识论是能动的革命的反映论。
解救有机磷中毒时,尽早应用阿托品是为了
以下哪项的目的是确定疾病的病因
患者,女性,32岁。发现在喉结正中右侧出现单个肿块3个月,肿块呈半圆形,表面光滑,可随吞咽动作而上下移动,按之不痛,生长缓慢。初步诊断为
关于水利工程建设项目工程质量检验制度,下列说法正确的是()。
国学是一个民族通过自己的体究,融贯各种知识形成的思想。这个思想不是固定的,而是生长着的。研究它,不是为了博古炫耀,也不仅仅是为了存亡继绝,而是为了我们能以自己的思想自立于天地之间。国学是学术,是思想,与汉服、祭拜、造假古董之类的“热”没有关系。国学不是既成
=________.
读取二进制文件的函数调用形式为:fread(buffer,size,count,fp);,其中buffer代表的是()。
表达式X+1>X是()。
最新回复
(
0
)