首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3,α4都是n维向量.判断下列命题是否成立. ①如果α1,α2,α3线性无关,α4不能用α1,α2,α3线性表示,则α1,α2,α3,α4线性无关. ②如果α1,α2线性无关,α3,α4都不能用α1,α2线性表示,则α1,α
设α1,α2,α3,α4都是n维向量.判断下列命题是否成立. ①如果α1,α2,α3线性无关,α4不能用α1,α2,α3线性表示,则α1,α2,α3,α4线性无关. ②如果α1,α2线性无关,α3,α4都不能用α1,α2线性表示,则α1,α
admin
2019-05-14
49
问题
设α
1
,α
2
,α
3
,α
4
都是n维向量.判断下列命题是否成立.
①如果α
1
,α
2
,α
3
线性无关,α
4
不能用α
1
,α
2
,α
3
线性表示,则α
1
,α
2
,α
3
,α
4
线性无关.
②如果α
1
,α
2
线性无关,α
3
,α
4
都不能用α
1
,α
2
线性表示,则α
1
,α
2
,α
3
,α
4
线性无关.
③如果存在n阶矩阵A,使得Aα
1
,Aα
2
,Aα
3
,Aα
4
线性无关,则α
1
,α
2
,α
3
,α
4
线性无关.
④如果α
1
=Aβ
1
,α
2
=Aβ
2
,α
3
=Aβ
3
,α
4
=Aβ
4
,其中A可逆,β
1
,β
2
,β
3
,β
4
线性无关,则α
1
,α
2
,
α
3
,α
4
线性无关.
其中成立的为_______.(填序号即可)
选项
答案
①,③,④.
解析
①直接由定理即可得到.
②明显不对,例如α
3
不能用α
1
,α
2
线性表示,而α
3
=α
4
时,α
3
,α
4
都不能用α
1
,α
2
线性表示但是
α
1
,α
2
,α
3
,α
4
线性相关.
③容易用秩说明:Aα
1
,Aα
2
,Aα
3
,Aα
4
的秩即矩阵(Aα
1
,Aα
2
,Aα
3
,Aα
4
)的秩,而(Aα
1
,Aα
2
,
Aα
3
,Aα
4
)=A(α
1
,α
2
,α
3
,α
4
),由矩阵秩的性质④,
r(Aα
1
,Aα
2
,Aα
3
,Aα
4
)≤r(α
1
,α
2
,α
3
,α
4
).Aα
1
,Aα
2
,Aα
3
,Aα
4
无关.秩为4,于是α
1
,α
2
,α
3
,α
4
的秩也一定为4,线性无关.
④也可从秩看出:A可逆时,r(α
1
,α
2
,α
3
,α
4
)=r(Aα
1
,Aα
2
,Aα
3
,Aα
4
)=4.
转载请注明原文地址:https://kaotiyun.com/show/Zc04777K
0
考研数学一
相关试题推荐
设有幂级数2+.证明此幂级数满足微分方程y’’一y=一1;
设f(x)在[a,b]上连续,且f(x)>0,证明:存在ξ∈(a,b),使得∫aξf(x)dx=∫ξbf(x)dx.
设A是n阶正定矩阵,证明:|E+A|>1.
设为f(x)的一个原函数,则∫f’(2x一1)dx=_________.
在上半平面上求一条上凹曲线,其上任一点P(x,y)处的曲率等于此曲线在该点的法线段PQ的长度的倒数(Q为法线与x轴的交点),且曲线在点(1,1)处的切线与x轴平行.
判断级数的敛散性.
设f(x)在[0,2]上连续,在(0,2)内可导,f(0)=f(2)=0,且|f’(x)|≤2.证明:|∫02f(x)dx|≤2.
函数f(x,y,z)=x2+y3+z4在点(1,一1,0)处方向导数的最大值与最小值的平方和为___________。
设随机变量X1,X1,X3相互独立,且则E[X1(X1+X2-X3)]=______.
随机试题
患者,男性。腋温39.7℃,使用冰袋为其降温时应将冰袋放在
试述我国公务员的限制性资格条件。
8个月婴儿,外周血白细胞数11×109/L,中性粒细胞0.70,淋巴细胞0.28,单核细胞0.02。以下哪个结论是正确的
挥发油开始逐渐挥发的温度低温养护法的温度是
墙砌筑高度超1.2m时应搭设脚手架,一块脚手板上的人不超过()人。
个人经营贷款的信用风险包括()。
某产品本月成本资料如下:(1)本企业该产品预算产量的工时用量标准为1000小时,制造费用均按人工工时分配。(2)本月实际产量20件,实际耗用材料900千克,实际人工工时950小时,实际成本如下:要求:计算直接人工工资率差异和人工效率差异;
下列说法不正确的是()。
OnMakingFriendsA.Title:OnMakingFriendsB.Timelimit:40minutesC.Wordlimit:160-200words(notincluding
WhydomostAmericansknowthegartersnakes?
最新回复
(
0
)