首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设某种元件使用寿命(单位:小时)服从参数为λ的指数分布,其平均使用寿命为40小时,在使用中当一个元件损坏后立即更换另一个新的元件,如此继续下去.已知每个元件的进价为a元,试求在年计划中应为购买此种元件作多少预算,才可以有95%的把握保证一年够用(假定一年按
设某种元件使用寿命(单位:小时)服从参数为λ的指数分布,其平均使用寿命为40小时,在使用中当一个元件损坏后立即更换另一个新的元件,如此继续下去.已知每个元件的进价为a元,试求在年计划中应为购买此种元件作多少预算,才可以有95%的把握保证一年够用(假定一年按
admin
2019-12-26
59
问题
设某种元件使用寿命(单位:小时)服从参数为λ的指数分布,其平均使用寿命为40小时,在使用中当一个元件损坏后立即更换另一个新的元件,如此继续下去.已知每个元件的进价为a元,试求在年计划中应为购买此种元件作多少预算,才可以有95%的把握保证一年够用(假定一年按照2 000个工作小时计算).
选项
答案
假设一年需要n个元件,则预算经费为na元. 设每个元件的寿命为X
i
,则n个元件使用寿命为[*] 由题意[*]又[*] 由独立同分布中心极限定理,[*] [*] 故年预算至少应为64a元.
解析
转载请注明原文地址:https://kaotiyun.com/show/ZhD4777K
0
考研数学三
相关试题推荐
构造非齐次方程组,使得其通解为(1,0,0,1)T+c1(1,1,0,一1)T+c2(0,2,1,1)T,c1,c2任意.
设甲、乙两人随机决定次序对同一目标进行独立地射击,并约定:若第一次命中,则停止射击,否则由另一人进行第二次射击,不论命中与否,停止射击.设甲、乙两人每次射击命中目标的概率依次为0.6和0.5.(I)计算目标第二次射击时被命中的概率;(Ⅱ
设二维随机变量(X,Y)的联合概率密度为,-∞<x,y<+∞,记Z=X2+Y2.求:(I)Z的密度函数;(Ⅱ)EZ,DZ;(Ⅲ)P{Z≤1}.
设α1,α2,…,αs和β1,β2,…,βt是两个线性无关的n维实向量组,并且每个αi和βj都正交,证明α1,α2,…,αs,β1,β2,…,βt线性无关.
计算n阶行列式①对角线上的元素都为0,其他元素都为1.
设总体X~N(0,σ2),参数σ>0未知,X1,X2,…,Xn是取自总体X的简单随机样本(n>1),令估计量(I)求的数学期望;(Ⅱ)求方差
设A为n阶非零方阵,且|A|=0,则|A*|=_______.
设总体X的概率密度为f(x;α,β)=其中α和β是未知参数,利用总体X的如下样本值一0.5,0.3,一0.2,一0.6,一0.1,0.4,0.5,一0.8,求α的矩估计值和最大似然估计值.
设A、B是两个随机事件,且P(A)==_______
已知4阶方阵A=[α1,α2,α3,α4],α1,α2,α3,α4均为4维列向量,其中α1,α2线性无关,若β=α1+2α2一α3=α1+α2+α3+α4=α1+3α2+α3+2α4,则Ax=β的通解为________.
随机试题
计算机的发展趋势不包括________。
目前国内临时性创面覆盖物首选
关于无菌产品生产控制
中西药联用的优点有
无菌药品生产中的轧盖,直接接触药品的包装材料最后一次精洗的最低要求是灌装前需除菌滤过的药液的配制应在
在系统效率SE和寿命周期LCC之间进行权衡时,可采用的有效手段有( )。
某工程项目建设过程中,发包人与机械厂签订了加工非标准的大型管道叉管的合同,并提供了制作叉管的钢模,根据《民法典》,该合同属于()合同。
中央银行用来实行货币紧缩政策的手段有()。
北京地势西北高,东南低。()
构成马斯洛人格理论基础的概念是
最新回复
(
0
)