首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2007年试题,24)设三阶对称矩阵A的特征值λ1=1,λ2=2,λ3=一2,又α1=(1,一1,1)T是A的属于λ1的一个特征向量.记B=A2一4A3+E,其中E为三阶单位矩阵. (I)验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量; (Ⅱ)
(2007年试题,24)设三阶对称矩阵A的特征值λ1=1,λ2=2,λ3=一2,又α1=(1,一1,1)T是A的属于λ1的一个特征向量.记B=A2一4A3+E,其中E为三阶单位矩阵. (I)验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量; (Ⅱ)
admin
2014-08-19
108
问题
(2007年试题,24)设三阶对称矩阵A的特征值λ
1
=1,λ
2
=2,λ
3
=一2,又α
1
=(1,一1,1)
T
是A的属于λ
1
的一个特征向量.记B=A
2
一4A
3
+E,其中E为三阶单位矩阵.
(I)验证α
1
是矩阵B的特征向量,并求B的全部特征值与特征向量;
(Ⅱ)求矩阵B.
选项
答案
(I)容易验证A
1
n
α
1
=λ
1
n
α
1
(n=1,2,…),于是Bα
1
=(A
5
一4A
3
+B)α
1
=(λ
1
5
一4λ
1
3
+1)α
1
=一2α
1
于是一2是矩阵B的特征值,k
1
α
1
是B属于特征值一2的全部特征向量(k
1
∈R,非零).同理可求得矩阵B的另外两个特征值1,1.因A为实对称矩阵,则B也为实对称矩阵,于是矩阵曰属于不同特征值的特征向量正交.设B的属于1的特征向量为(x
1
,x
2
,x
3
)
T
,则有方程x
1
一x
2
+x
3
=0于是求得B的属于1的全部特征向量为β=k
2
α
2
+k
3
α
3
,其中α
2
=(一1,0,1)
T
,α
3
=(1,1,0)
T
,k
2
,k
3
∈R,不全为零.(Ⅱ)令矩阵P=(α
1
,α
2
,α
3
)=[*]则P
-1
BP=diag(一2,1,1),于是[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Zt34777K
0
考研数学二
相关试题推荐
下列命题正确的是()。
就a,b的不同取值情况讨论方程组何时无解、何时只有唯一解、何时有无数个解?在有无数个解时求其通解。
某商品产量关于价格P的函数为Q=75-p2,求:(Ⅰ)当p=4时的边际需求,说明其经济意义;(Ⅱ)当p=4时的需求价格弹性,说明其经济意义;(Ⅲ)当p=4时,若价格提高1%,总收益是增加还是减少?收益变化率是多少?
设A=,且ABAT=E+2BAT,则B=________。
设f(x)二阶可导,f(0)=f(1)=0,且f(x)在[0,1]上的最小值为-1.证明:存在ξ∈(0,1),使得fn(ξ)≥8。
设α1,α2,α3,α4为4维列向量组,其中α1,α2,α1线性尤关,α4=α1+α2+2α3,记A=(α1-α2,α2+α3,-α1+α2+α3),且方程组Ax=α4有无穷多解,求:(1)常数a的值;(2)方程组Ax=α4的通解。
设函数y=y(x)满足(1)求解y(x);(2)已知存在,求y0的值,并求极限。
设A为3阶实对称矩阵,已知|A|=-12,A的三个特征值之和为1,又α=(1,0,-2)T是齐次线性方程组(A*-4E)X=0的一个解向量。(1)求矩阵A;(2)求方程组(A*+6E)X=0的通解。
随机试题
计算机的主存储器包括_______两类存储器。
患者男性,40岁,发现心脏杂音2年,患者出现下列哪项改变对明确风湿性心脏病的诊断最有价值
可用于确定桩基承载力的检测方法有()。
下列关于买卖合同法律特征的相关表述中,正确的是()。
身处教育实践第一线的研究者与受过专门训练的科学研究者密切协作,以教育实践中存在的某一问题作为研究对象,通过合作研究,再把研究结果应用到自身从事的教育实践中,这种研究方法是()。
关于人类探月,下列说法不正确的是()。
波兹纳(Posner,1969)通过让被试判断两个字母(如A和A、A和a)是否是同一个字母的研究说明在短时记忆的最初阶段存在的编码方式是
证明:当0<a<b<π时,bsinb+2cosb+πb>asina+2cosa+πa。
Asaphysicianwhotravelsquitealot,Ispendalotoftimeonplaneslisteningforthatdreaded"Isthereadoctorunboard?"
Whentheearthwasborntherewasnoocean.Thegraduallycoolingearthwasenvelopedinheavylayersofcloud,which【S1】______m
最新回复
(
0
)