首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设D是χOy平面上以(1,1),(-1,1),(-1,-1)为顶点的三角形区域,D1为区域D位于第一象限的部分,则(χy+cosχsiny)dσ等于( ).
设D是χOy平面上以(1,1),(-1,1),(-1,-1)为顶点的三角形区域,D1为区域D位于第一象限的部分,则(χy+cosχsiny)dσ等于( ).
admin
2018-05-17
70
问题
设D是χOy平面上以(1,1),(-1,1),(-1,-1)为顶点的三角形区域,D
1
为区域D位于第一象限的部分,则
(χy+cosχsiny)dσ等于( ).
选项
A、2
cosχsinydχdy
B、2
χydχdy
C、4
(χy+cosχsiny)dχdy
D、0
答案
A
解析
令A(1,1),B(0,1),C(-1,1),D(-1,0),E(-1,-1),记△OAB,△OBC,△OCD、△ODE所在的区域分别记为D
1
,D
2
,D
3
,D
4
,
(χy+cosχsiny)dσ=(
)(χy+cosχsiny)dσ,
根据对称性,
故选A.
转载请注明原文地址:https://kaotiyun.com/show/a0k4777K
0
考研数学二
相关试题推荐
设f(x)为连续函数,,则F’(2)等于().
一个半球体状的雪堆,其体积融化的速率与半球面面积S成正比,比例常数K>0.假设在融化过程中雪堆始终保持半球体状,已知半径为r0的雪堆在开始融化的3个小时内,融化了其体积的7/8,问雪堆全部融化需要多少小时?
(2001年试题,十二)已知α1,α2,α3,α4是线性方程组Ax=0的一个基础解系,若β1=α1+tα2,β2=α2+tα3,β3=α3+tα4,β4=α4+tα1,讨论实数t满足什么关系时,β1,β2β3,β4,卢4也是.Ax=0的一个基础解系.
(2009年试题,三(22))设(I)求满足Aξ2=ξ1,A2ξ3=ξ1的所有向量ξ2,ξ3;(Ⅱ)对(I)中的任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关.
一个半球体状的雪堆,其体积融化的速率与半球面面积S成正比,比例系数K>0.假设在融化过程中雪堆始终保持半球体状,已知半径为r0的雪堆在开始融化的3小时内,融化了其体积的,问雪堆全部融化需要多少小时?
过点(0,1)作曲线L:y=lnx的切线,切点为A,又L与x轴交于B点,区域D由L与直线AB围成,求区域D的面积及D绕x轴旋转一周所得旋转体的体积.
设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示.(1)求a的值.(2)将β1,β2,β3用α1,α2,α3线性表示
设方程y3+sin(xy)一e2x=0确定曲线y=y(x).求此曲线y=y(x)在点(0,1)处的曲率与曲率半径.
下列说法中正确的是().
设f(x)连续,∫0xxf(x-t)dt=1-cosx,求
随机试题
简述软组织损伤的处理方法。
某银行吸收到一笔200万元现金的活期存款,法定存款准备金率是6%,出于对风险的考虑,该行额外增加在中央银行存款3万元,后来存款单位提出了1万元,试计算这笔存款可能派生出的最大派生存款。
脑出血最主要的病因是
关于和解的说法,正确的是()。
制度化教育建立的典型表现特征是()。
以下关于一罪与数罪,正确的说法是()。
“时势造英雄”和“英雄造时势”()
Lonelypeople,itseems,areatgreaterriskthanthegregariousofdevelopingillnessesassociatedwithchronicinflammation,s
He______twothousandtreessince1985.
Mostworthwhilecareersrequiresomekindofspecializedtraining.Ideally,therefore,thechoiceofan【C1】______shouldbemade
最新回复
(
0
)