首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在(一∞,+∞)上有定义,则下述命题中正确的是( )
设函数f(x)在(一∞,+∞)上有定义,则下述命题中正确的是( )
admin
2019-03-11
78
问题
设函数f(x)在(一∞,+∞)上有定义,则下述命题中正确的是( )
选项
A、若f(x)在(一∞,+∞)上可导且单调增加,则对一切∈(一∞,+∞),都有f’(x)>0
B、若f(x)在点x
0
处取得极值,则f’(x
0
)=0
C、若f"(x
0
)=0,则(x
0
,f(x
0
))是曲线y=f(x)的拐点坐标
D、若f’(x
0
)=0,f"(x
0
)=0,f"’(x
0
)≠0,则x
0
一定不是f(x)的极值点
答案
D
解析
若在(一∞,+∞)上f’(x)>0,则一定有f(x)在(一∞,+∞)上单调增加,但可导函数f(x)在(一∞,+∞)上单调增加,可能有f’(x)≥0。例如f(x)=x
3
在(一∞,+∞)上单调增加,f’(0)=0。故不选A。
f(x)若在x
0
处取得极值,且f’(x
0
)存在,则有f’(x
0
)=0,但当f(x)在x
0
处取得极值,在x
0
处不可导,就得不到f’(x
0
)=0,例如f(x)=|x|在x
0
=0处取得极小值,它在x
0
=0处不可导,故不选B。
如果f(x)在x
0
处二阶导数存在,且(x
0
,f(x
0
))是曲线的拐点坐标,则f"(x
0
)=0,反之不一定,例如f(x)=x
4
在x
0
=0处,f"(0)=0,但f(x)在(一∞,+∞)没有拐点,故不选C。由此选D。
转载请注明原文地址:https://kaotiyun.com/show/aCP4777K
0
考研数学三
相关试题推荐
设f(x)二阶可导,=1且f"(x)>0.证明:当x≠0时,f(x)>x.
证明方程在(0,+∞)内有且仅有两个根.
设A是n阶正定矩阵,证明:|E+A|>1.
若y1,y2,y3是二阶非齐次线性微分方程(1)的线性无关的解,试用y1,y2,y3表达方程(1)的通解.y〞+P(x)yˊ+Q(x)y=f(x)(1)
就a,b的不同取值,讨论方程组
已知α1=(1,1,1,0)T,α2=(0,1,2,1)T,α3=(3,1,-2,1)T线性无关,则将其正交化,有
设A为n×m矩阵,B为m×n矩阵(m>n),且AB=E.证明:B的列向量组线性无关.
设A是n×m矩阵,B是m×n矩阵,其中n
判断下列结论是否正确?为什么?(Ⅰ)若函数f(x),g(x)均在x0处可导,且f(x0)=g(x0),则f’(x0)=g’(x0);(Ⅱ)若x∈(x0一δ,x0+δ),x≠x0时f(x)=g(x),则f(x)与g(x)在x=x0处有相同
有三个盒子,第一个盒子有4个红球1个黑球,第二个盒子有3个红球2个黑球,第三个盒子有2个红球3个黑球,如果任取一个盒子,从中任取3个球,以X表示红球个数.(1)写出X的分布律;(2)求所取到的红球数不少于2个的概率.
随机试题
简述医学模式转变对护理学的影响。
根据我国《消费者权益保护法》的规定,消费者和经营者发生消费者权益争议的,可以通过以下哪些途径解决?()
社会消费基金包括的项目有()。
以下关于保护贸易政策的表述不正确的是()。
遵守《中华人民共和国教师法》的主体只是教师群体。
2004年11月20日,胡锦涛主席在出席亚太经合组织领导人非正式会议期间,会见了美国总统布什。关于台湾问题,胡锦涛指出,当前台海局势复杂敏感,维护国家的主权和领土完整,是中国的核心利益。中国政府愿尽一切努力争取以和平方式解决台湾问题,但绝不容许“台独”。布
A、 B、 C、 D、 D
设P(A)=P(B)=P(C)=,P(AB)=0,P(AC)=P(BC)=,则A,B,C都不发生的概率为_______.
Ms.Andrewhaddifficultyunderstanding_______thecustomerwastryingtocommunicatetohim.
It’s10pm.Youmaynotknowwhereyourchildis,butthechipdoes.Thechipwillalsoknowifyourchildhasfallenandne
最新回复
(
0
)