首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[一a,a](a>0)上有四阶连续的导数,存在. 证明:存在ξ1,ξ2∈[一a,a],使得a5f(4)(ξ1)=60∫-aaf(x)dx,a4f(4)(ξ1)=120f(ξ2).
设f(x)在[一a,a](a>0)上有四阶连续的导数,存在. 证明:存在ξ1,ξ2∈[一a,a],使得a5f(4)(ξ1)=60∫-aaf(x)dx,a4f(4)(ξ1)=120f(ξ2).
admin
2018-11-22
24
问题
设f(x)在[一a,a](a>0)上有四阶连续的导数,
存在.
证明:存在ξ
1
,ξ
2
∈[一a,a],使得a
5
f
(4)
(ξ
1
)=60∫
-a
a
f(x)dx,a
4
f
(4)
(ξ
1
)=120f(ξ
2
).
选项
答案
上式两边积分得∫
-a
a
f(x)dx=[*]∫
-a
a
f
(4)
(ξ)x
4
dx. 因为f
(4)
(x)在[一a,a]上为连续函数,所以f
(4)
(x)在[一a,a]上取到最大值M和最小值m,于是有mx
4
≤f
(4)
(ξ)x
4
≤Mx
4
, [*] a
5
f
(4)
(ξ
1
)=60∫
-a
a
f(x)dx. 再由积分中值定理,存在ξ
2
∈[一a,a],使得a
5
f
(4)
(ξ
1
)=60∫
-a
a
f(x)dx=120af(ξ
2
),即a
4
f
(4)
(ξ
1
)=120f(ξ
2
).
解析
转载请注明原文地址:https://kaotiyun.com/show/aEM4777K
0
考研数学一
相关试题推荐
设连续型随机变量X的概率密度为F(x)=已知E(X)=2,P{1<X<3}=3/4,求:随机变量Y=eX的数学期望与方差。
已知随机变量X的分布函数F(x)是连续的严格单调函数,Y=1-2X,F(0.25)=0.75,P{Y≤k}=0.25,则k=_______。
设y=f(x)在[1,3]上单调,导函数连续,反函数为x=g(y),且f(1)=1,f(3)=2,∫13f(x)dx=5/2,则∫12g(y)=_______。
已知总体X的概率密度f(x)=(λ>0),X1,X2,…,Xn是来自总体X的简单随机样本,Y=X2。求Y的数学期望E(Y);
设函数f(x)=1-,数列{xn}满足0<x1<1且xn+1=f(xn)。数列{xn}是否收敛,若收敛,求出极限xn;若不收敛,请说明理由。
设函数f(x)=x+,数列{xn}满足x1=1且xn+1=f(xn),求f(x)的极值;
设3阶矩阵A=(α1,α2,α3)有3个不同的特征值,且α3=α1+2α2.证明:r(A)=2;
计算,其中∑为圆柱面x2+y2=1及平面z=x+2,z=0所围立体的表面.
设二次型f(x1,x2,x3)=5x12+ax22+3x32一2x1x2+6x1x3一6x2x3的矩阵合同于.(Ⅰ)求常数a;(Ⅱ)用正交变换法化二次型f(x1,x2,x3)为标准形.
0当x=0时,t=0;当t=0时,由y+ey=1,得y=0.方程y+ey=ln(e+t2)两边对t求导数,得
随机试题
石膏固定时,宜将患肢摆放的体位是
A.爪形手B.垂腕C.银叉畸形D.骨筋膜室综合征伸直型肱骨髁上骨折易导致
与胆结石形成关系不大的生活史或健康史是
维生素Bl水杨酸
我国《宪法》保护公民的人身自由。根据宪法规定,对公民实施逮捕,下列说法正确的有:
()一般适用于招标人对招标项目的技术、性能有专门要求的项目。
如果设备出现不可消除性的有形磨损,应该采取的补偿形式是( )。
“教育一定要成为一种学业,否则无所希望”,“教育的方法必须成为一种科学,否则决不能成为一种有系统的学问”。这正是()的“教育学”思想超出他的前人和同代人的地方。
飞机起飞时,乘客容易出现耳朵不舒服甚至些许疼痛的感觉,为缓解这一症状,乘务人员往往让乘客咀嚼口香糖,这可以起到的作用是()。
______isacceptedastrueisrelatively,andnotabsolutelytrue.
最新回复
(
0
)