首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设为A的特征向量. (I)求a,b及A的所有特征值与特征向量. (Ⅱ)A可否对角化?若可对角化,求可逆矩阵P,使得P-1AP为对角矩阵.
设为A的特征向量. (I)求a,b及A的所有特征值与特征向量. (Ⅱ)A可否对角化?若可对角化,求可逆矩阵P,使得P-1AP为对角矩阵.
admin
2017-12-31
38
问题
设
为A的特征向量.
(I)求a,b及A的所有特征值与特征向量.
(Ⅱ)A可否对角化?若可对角化,求可逆矩阵P,使得P
-1
AP为对角矩阵.
选项
答案
(Ⅰ)由Aα=λα得[*],即 [*]解得a=1,b=1,λ=3. 由|λE-A|=[*]=λ(λ-2)(λ-3)=0得λ
1
=0,λ
2
=2,λ
3
=3. (Ⅱ)因为A的特征值都是单值,所以A可相似对角化. 将λ
1
=0代入(λE-A)X=0得λ
1
=0对应的线性无关特征向量为α
1
=[*] 将λ
2
=2代入(λE-A)X=0得λ
2
=2对应的线性无关特征向量为α
2
=[*] 将λ
3
=3代入(λE-A)X=0得λ
3
=3对应的线性无关特征向量为α
3
=[*] [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/aXX4777K
0
考研数学三
相关试题推荐
设生产函数和成本函数分别为当成本预算为S时,两种要素投入量x和y,为多少时,产量Q最大,并求最大产量.
在球面x2+y2+z2=5R2(x>0,y>0,z>0)上,求函数f(x,y,z)=lnx+lny+3lnz的最大值,并利用所得结果证明不等式
设f(x,y)具有二阶连续偏导数.证明:由方程f(x,y)=0所确定的隐函数y=φ(x)在x=a处取得极值b=φ(A)的必要条件是f(a,b)=0,f’x(a,b)=0,f’y(a,b)≠0.且当r(a,b)>0时,b=φ(A)是极大值;当r(a,
已知fn(x)满足f’n(x)=fn(x)+xn-1ex(n为正整数),且fn(1)=,求函数项级数之和.
设四元齐次线性方程组(Ⅰ)为又已知某齐次线性方程组(Ⅱ)的通解为k1[0,1,1,0]T+k2[一1,2,2,1]T.求线性方程组(Ⅰ)的基础解系;
设矩阵,则A3的秩为_______.
设矩阵且秩(A)=3,则k_______.
已知向量α=(1,k,1)T是矩阵的逆矩阵A-1的特征向量,试求常数志的值及与α对应的特征值。
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解。(Ⅰ)求A的特征值与特征向量;(Ⅱ)求正交矩阵Q和对角矩阵A,使得QTAQ=A;(Ⅲ)求A及,其中E为3阶单位矩阵。
设有来自三个地区的各10各、15名和25名考生的报名表,其中女生的报名表分别为3份、7份和5份。随机地取一个地区的报名表,从中先后抽出两份(1)求先抽到的一份是女生表的概率p;(2)已知后抽到的一份是男生表,求先抽到的一份是女生表的概率q。
随机试题
离婚案件中,一方婚前贷款购买的不动产()
邓小平的行政组织思想的主要观点有
上入肺、中走脾、下达肾与膀胱的药是
A.卤门早闭B.卤门迟闭C.卤门凹陷D.卤门隆起E.卤门宽大,骨缝裂开
短路电流计算中,假定在正常运行下电网内的三相系统:
二级评价的补充地面气象观测可选择有代表性的季节进行连续观测,观测期限应在()以上。
以下各项中,()是世界贸易组织的核心原则。
一般地,用正态分布描述()的分布。
李奶奶是独居老人,腿脚不便。社会工作者大梁了解到,同一单元的赵婶经常帮李奶奶买菜,照顾李奶奶。大梁邀请赵婶参加“智慧居民学习小组”,赵婶学会了网上购物。赵婶说以后可以在网上为李奶奶购买所需物品了,省出的时间可以陪李奶奶聊天。大梁上述服务的目的是为李奶奶建构
Writeananswertooneofthequestions2-4inthispart.Writeyouranswerin200-250words.Question2Salesofoneofyou
最新回复
(
0
)