首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y=f(x)是区间[0,1]上的任一非负连续函数。 (Ⅰ)试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积,等于在区间[x0,1]上以y=f(x)为曲边的梯形面积。 (Ⅱ)又设f(x)在区间(0,1)内可导,且f’(x)>一,
设y=f(x)是区间[0,1]上的任一非负连续函数。 (Ⅰ)试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积,等于在区间[x0,1]上以y=f(x)为曲边的梯形面积。 (Ⅱ)又设f(x)在区间(0,1)内可导,且f’(x)>一,
admin
2017-12-29
65
问题
设y=f(x)是区间[0,1]上的任一非负连续函数。
(Ⅰ)试证存在x
0
∈(0,1),使得在区间[0,x
0
]上以f(x
0
)为高的矩形面积,等于在区间[x
0
,1]上以y=f(x)为曲边的梯形面积。
(Ⅱ)又设f(x)在区间(0,1)内可导,且f’(x)>一
,证明(Ⅰ)中的x
0
是唯一的。
选项
答案
(Ⅰ)本题可转化为证明x
0
f(x
0
)=∫
x0
1
f(x)dx。令φ(x)=一x∫
x
1
f(t)dt,则φ(x)在闭区间[0,1]上是连续的,在开区间(0,1)上是可导的,又因为φ(0)=φ(1)=0,根据罗尔定理可知,存在x
0
∈(0,1),使得φ’(x
0
)=0,即 φ’(x
0
)=x
0
f(x
0
)一∫
x0
1
f(t)dt=0, 即 x
0
f(x
0
)=∫
x0
1
f(x)dx。 (Ⅱ)令 F(x)= xf(x)一∫
x
1
f(t)dt, 且由f’(x)>[*]有 F’(x)=f’(x)+f(x)+ f(x)=f(x)+xf’(x)>0, 即F(x)在(0,1)内是严格单调递增的,从而F(x)=0的点x=x
0
一定唯一,因此(Ⅰ)中的点是唯一的。
解析
转载请注明原文地址:https://kaotiyun.com/show/amX4777K
0
考研数学三
相关试题推荐
已知线性方程组及线性方程组(Ⅱ)的基础解系ξ1=[一3,7,2,0]T,ξ2=[一1,一2,0,1]T.求方程组(Ⅰ)和(Ⅱ)的公共解.
设f(x),g(x)在[a,b]上连续,且满足∫axf(t)dt≥∫axg(t)dt,x∈[a,b),∫abf(t)dt=∫abg(t)dt.证明:∫abxf(x)dx≤∫abxg(x)dx.
变换下列二次积分的积分次序:
设A是n阶实矩阵,有Aξ=λξ,ATη=μη,其中λ,μ是实数,且λ≠μ,ξ,η是n维非零向量.证明:ξ,η正交.
A是三阶矩阵,λ1,λ2,λ3是三个不同的特征值,ξ1,ξ2,ξ3是相应的特征向量.证明:向量组A(ξ1+ξ2),A(ξ2+ξ3),A(ξ3+ξ1)线性无关的充要条件是A是可逆矩阵.
设A是m×n阶实矩阵,证明:(1)r(ATA)=r(A);(2)ATAX=ATb一定有解.
设f(x)在点x=a处可导,则等于()
微分方程(x2一1)dy+(2xy一cosx)dx=0满足初始条件y(0)=1的特解为___________。
设y=ex是微分方程xy’+p(x)y=x的一个解,求此微分方程满足条件y|x=ln2=0的特解.
设(r,θ)为极坐标,u=u(r,θ)具有二阶连续偏导数,并满足
随机试题
税收保全和税收强制执行措施中的具体规定。
对每组型砂透气性试验做三个试样,每个试样做一次透气性测试,取三次平均值作为测试结果。如果三个试样试验结果与平均值的差值大于5%,应重做试验。()
A.甲状腺激素B.生长激素C.两者都是D.两者都不是能促进蛋白质合成的激素是
妊娠母猪,精神沉郁,食欲未见异常,体温38.5℃,生长缓慢,皮肤粗糙,呈脂溢性皮炎,口唇发炎,继而共济失调,轻瘫,鬃毛脱落,流产、早产,所产仔猪孱弱,秃毛,皮炎,结膜炎。治疗该病首选药物是
关于机关法人说法正确的是()。
按持股对象是否确定划分,并购可以分为()
固定收益平台所交易的固定收益证券不包括()。
财政制度的核心是()。
教师的学科专业素养包括()等。
AmericansseekingjobsthissideoftheAtlanticshouldbeawarethatsometimesthingsaredonedifferentlyhere.JenniferVesse
最新回复
(
0
)