首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y=f(x)是区间[0,1]上的任一非负连续函数。 (Ⅰ)试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积,等于在区间[x0,1]上以y=f(x)为曲边的梯形面积。 (Ⅱ)又设f(x)在区间(0,1)内可导,且f’(x)>一,
设y=f(x)是区间[0,1]上的任一非负连续函数。 (Ⅰ)试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积,等于在区间[x0,1]上以y=f(x)为曲边的梯形面积。 (Ⅱ)又设f(x)在区间(0,1)内可导,且f’(x)>一,
admin
2017-12-29
73
问题
设y=f(x)是区间[0,1]上的任一非负连续函数。
(Ⅰ)试证存在x
0
∈(0,1),使得在区间[0,x
0
]上以f(x
0
)为高的矩形面积,等于在区间[x
0
,1]上以y=f(x)为曲边的梯形面积。
(Ⅱ)又设f(x)在区间(0,1)内可导,且f’(x)>一
,证明(Ⅰ)中的x
0
是唯一的。
选项
答案
(Ⅰ)本题可转化为证明x
0
f(x
0
)=∫
x0
1
f(x)dx。令φ(x)=一x∫
x
1
f(t)dt,则φ(x)在闭区间[0,1]上是连续的,在开区间(0,1)上是可导的,又因为φ(0)=φ(1)=0,根据罗尔定理可知,存在x
0
∈(0,1),使得φ’(x
0
)=0,即 φ’(x
0
)=x
0
f(x
0
)一∫
x0
1
f(t)dt=0, 即 x
0
f(x
0
)=∫
x0
1
f(x)dx。 (Ⅱ)令 F(x)= xf(x)一∫
x
1
f(t)dt, 且由f’(x)>[*]有 F’(x)=f’(x)+f(x)+ f(x)=f(x)+xf’(x)>0, 即F(x)在(0,1)内是严格单调递增的,从而F(x)=0的点x=x
0
一定唯一,因此(Ⅰ)中的点是唯一的。
解析
转载请注明原文地址:https://kaotiyun.com/show/amX4777K
0
考研数学三
相关试题推荐
设矩阵,矩阵B=(kE+A)2,求对角阵A,与B和A相似,并问k为何值时,B为正定阵.
设f(x),g(x)在[a,b]上连续,且满足∫axf(t)dt≥∫axg(t)dt,x∈[a,b),∫abf(t)dt=∫abg(t)dt.证明:∫abxf(x)dx≤∫abxg(x)dx.
求不定积分
若[x]表示不超过x的最大整数,则积分∫04[x]dx的值为()
设L是一条平面曲线,其上任意一点P(x,y)(x>0)到坐标原点的距离恒等于该点处的切线在y轴上的截距,且L经过点试求曲线L的方程;
设X1,X2,…,Xn是取自均匀分布在[0,θ]上的一个样本,试证:Tn=max{X1,X2,…,Xn}是θ的相合估计.
设f(x)在点x=a处可导,则等于()
求函数z=x2+y2+2x+y在区域D:x2+y2≤1上的最大值与最小值.
设y=ex是微分方程xy’+p(x)y=x的一个解,求此微分方程满足条件y|x=ln2=0的特解.
随机试题
所谓()是会使人的心理和精神状态受到不利影响的声音。
边缘性龈炎的最主要治疗原则是
风心病心衰用洋地黄和利尿剂治疗,出现恶心、食欲不振,心电图为室性期前收缩二联律。下列哪一种情况最可能
性温,既补肾,又祛风湿的药是()。
完善社会主义市场经济体制还要求继续改革行政管理体制,合理划分()经济社会事务的管理责权,全面推进经济法制建设,加强执法和监督。
某城市跨线桥工程,上部结构为现浇预应力混凝土连续梁,其中主跨跨径为30m并跨越一条宽20m河道;桥梁基础采用直径1.5m的钻孔桩,承台尺寸为12.0m×7.0m×2.5m(长×宽×高),承台顶标高为+7.0m,承台边缘距驳岸最近距离为1.5m;河道常水位为
下列关于投资者的风险承受能力和意愿的说法中,正确的是()。
幂级数的和函数为_______.
Recently,thenewshasbeenfilledwithreportsofthe"birdflu".46.Asiaisonaregion-widehealthalert,withgovernments
考生文件夹下存在一个数据库文件“samp2.accdb”,里面已经设计好表对象“tQuota”和“tStock”,试按以下要求完成设计:创建一个查询,计算每类产品不同单位的库存金额总计。要求,行标题显示“产品名称”,列标题显示“单位”。所建查询名为“q
最新回复
(
0
)