首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y=f(x)是区间[0,1]上的任一非负连续函数。 (Ⅰ)试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积,等于在区间[x0,1]上以y=f(x)为曲边的梯形面积。 (Ⅱ)又设f(x)在区间(0,1)内可导,且f’(x)>一,
设y=f(x)是区间[0,1]上的任一非负连续函数。 (Ⅰ)试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积,等于在区间[x0,1]上以y=f(x)为曲边的梯形面积。 (Ⅱ)又设f(x)在区间(0,1)内可导,且f’(x)>一,
admin
2017-12-29
100
问题
设y=f(x)是区间[0,1]上的任一非负连续函数。
(Ⅰ)试证存在x
0
∈(0,1),使得在区间[0,x
0
]上以f(x
0
)为高的矩形面积,等于在区间[x
0
,1]上以y=f(x)为曲边的梯形面积。
(Ⅱ)又设f(x)在区间(0,1)内可导,且f’(x)>一
,证明(Ⅰ)中的x
0
是唯一的。
选项
答案
(Ⅰ)本题可转化为证明x
0
f(x
0
)=∫
x0
1
f(x)dx。令φ(x)=一x∫
x
1
f(t)dt,则φ(x)在闭区间[0,1]上是连续的,在开区间(0,1)上是可导的,又因为φ(0)=φ(1)=0,根据罗尔定理可知,存在x
0
∈(0,1),使得φ’(x
0
)=0,即 φ’(x
0
)=x
0
f(x
0
)一∫
x0
1
f(t)dt=0, 即 x
0
f(x
0
)=∫
x0
1
f(x)dx。 (Ⅱ)令 F(x)= xf(x)一∫
x
1
f(t)dt, 且由f’(x)>[*]有 F’(x)=f’(x)+f(x)+ f(x)=f(x)+xf’(x)>0, 即F(x)在(0,1)内是严格单调递增的,从而F(x)=0的点x=x
0
一定唯一,因此(Ⅰ)中的点是唯一的。
解析
转载请注明原文地址:https://kaotiyun.com/show/amX4777K
0
考研数学三
相关试题推荐
设A,B均为n阶矩阵,A有n个互不相同的特征值,且AB=BA.证明:B相似于对角阵.
对于实数x>0,定义对数函数,依此定义试证:(1)=-lnx(x>0);(2)ln(xy)=lnx+lny(x>0,y>0).
对于级数,其中um>0(n=1,2,…),则下列命题正确的是()
微分方程=0的通解是()
设A为n阶矩阵,λ1和λ2是A的两个不同的特征值,x1,x2是分别属于λ1和λ2的特征向量.证明:x1+x2不是A的特征向量.
已知n阶矩阵A的各行元素之和均为零,且r(A)=n一1,则线性方程组AX=0的通解是________.
已知,2阶方阵A满足矩阵方程A2一3A一2E=O.证明:A可逆,并求出其逆矩阵A-1.
直角坐标中的累次积分I=化为极坐标先r后θ次序的累次积分I=_________.
0令In=∫e—xsinnxdx=—e—xsinnx+n∫e—xcosnxdx=—e—xsinnx—ne—xcosnx—n2In。所以
已知A=,且AX+X+B+BA=O,求X2006。
随机试题
肝性脑病患者不宜
A、病原体被消灭或排出体外B、病原体携带状态C、隐性感染D、潜在性感染E、显性感染感染病原体后不出现临床表现,但产生了特异性免疫()
人工合成的单环β-内酰胺类药物:
舌红瘦少苔有裂纹多见于
2个月以上小儿首次接种卡介苗以下哪点最重要()
下列不属于气雾剂构成的是()。
业务员张某到某地采购一批等离子电视机,张某到该地后意外发现当地乙公司的液晶电视机很畅销,就用盖有甲公司公章的空白介绍信和空白合同书与乙公司签订了购买200台液晶电视机的合同,并约定货到付款。货到后,甲公司拒绝付款。下列表述中,正确的有()。
A、B两条流水线每小时均能装配1辆汽车。A流水线每装配3辆汽车要用1小时维护,B流水线每装配4辆汽车要用1.5小时维护。问两条流水线同时开始工作,装配200辆汽车需用多少个小时?
Completethetablebelow.WriteNOMORETHANTHREEWORDSforeachanswer.
A、Theywillbemorecarefulinbuyingpresents.B、Theywilllearnhowtobudgetandinvestinthefuture.C、Theywillbemoreli
最新回复
(
0
)