首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[1,2]上连续,在(1,2)内可导,且f(x)≠0(1<x<2),又存在。证明: (1)存在ξ∈(1,2),使得. (2)存在η∈(1,2),使得∫12f(t)dt=ξ(ξ一1)f’(η)ln2.
设f(x)在[1,2]上连续,在(1,2)内可导,且f(x)≠0(1<x<2),又存在。证明: (1)存在ξ∈(1,2),使得. (2)存在η∈(1,2),使得∫12f(t)dt=ξ(ξ一1)f’(η)ln2.
admin
2020-03-10
45
问题
设f(x)在[1,2]上连续,在(1,2)内可导,且f(x)≠0(1<x<2),又
存在。证明:
(1)存在ξ∈(1,2),使得
.
(2)存在η∈(1,2),使得∫
1
2
f(t)dt=ξ(ξ一1)f’(η)ln2.
选项
答案
(1)令h(x)=lnx,F(x)=∫
1
x
f(t)dt,且F’(x)=f(x)≠0, 由柯西中值定理,存在ξ∈(1,2),使得[*] (2)由[*]得f(1)=0, 由拉格朗日中值定理得f(ξ)=f(ξ)-f(1)=f’(η)(ξ-1),其中1<η<ξ, 故∫
1
2
f(t)dt=ξ(ξ-1)f’(η)ln2.
解析
转载请注明原文地址:https://kaotiyun.com/show/ayD4777K
0
考研数学三
相关试题推荐
设A是m阶矩阵,B是n阶矩阵,且|A|=a,|B|=b,若C=,则|C|=
设f(x)连续可导,g(z)在x=0的邻域内连续,且g(0)=1,f’(x)=-sin2x+∫0xg(x-t)dt,则().
设α1=(α1,α2,α3)T,α2=(b1,b2,b3)T,α3=(c1,c2,c3)T;则3条平面直线α1x+b1y+c1=0,α2x+b2y+c2=0,α3x+b3y+c3=0(其中ai2+bi2≠0,i=1,2,3)交于一点的充分必要条件是
设n维列向量组α1,α2,…,αm(m<n)线性无关,则n维列向量组β1,β2,…,βm线性无关的充分必要条件为()
设随机变量X与Y独立,且Y~N(0,1),则概率P{XY≤0}的值为
设A是3阶不可逆矩阵,α1,α2是Ax=0的基础解系,α3是属于特征值λ=1的特征向量,下列不是A的特征向量的是
设函数=_____________________。
如果y=cos2x是微分方程y’+P(x)y=0的一个特解,则该方程满足初始条件y(0)=2的特解为()
设f(x)在[0,π]上连续,证明。
设f(x)在[0,π]上连续,且,证明f(x)在(0,π)内至少有两个零点。
随机试题
2005年底前,现有()万kV以上燃煤、燃油火电机组必须安装烟气污染物在线连续自动监测装置。
按照计息方式的不同,附息债券还可细分为( )。
下列关于行政诉讼审判监督程序的说法中,符合规定的有()。
该私营企业设置账簿的法定时间应该是()。根据现行税法规定,纳税人账薄的保存期,除另有规定者外,至少要保存()。
2×15年1月1日,甲公司向其100名高管人员每人授予4万份股票期权,这些人员自被授予股票期权之日起连续服务满3年,即可按每股8元的价格购买甲公司4万股普通股股票(每股面值1元)。该期权在授予日的公允价值为每份10元。在等待期内,甲公司有10名高管人员离职
在信息爆炸的时代,面对海量的信息,媒体想在竞争中_______本也无可厚非,但是用断章取义、_______的方式博取读者的注意,却有些胜之不武。填入划横线部分最恰当的一项是:
在上述国家中,2008年单位耕地面积钾肥施用量最少的国家是:
公众人物需要担当更多的道德责任,因为权力和责任是相等的,既然拥有常人不具备的优势地位,那么就应该比一般人承担更高的道德要求。因此,承受更多的舆论批评甚至人身攻击,哪怕有一定程度的失真,也是不得不付出的必要代价。最能质疑上述观点的一项是()。
李进:这学期没有女生获得“银士达”奖学金。王芳:这就是说这学期没人获得“银士达”奖学金。李进:不,事实上有几个男生这学期获得了“银士达”奖学金。王芳的回答可能假设了以下所有的断定,除了:
根据下述材料,写一篇700字左右的论说文,题目自拟。哲学家培根一生写了五十九篇小品文,他仿佛谈论了人世间所有大的事情,但唯独没有谈论幸福。培根没有谈论幸福,但他论证了那些世人对幸福的误解。人们往往疯狂追求着某些与幸福相左的事物,却把拥有它们当作拥
最新回复
(
0
)