首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解. 求正交矩阵Q和对角矩阵A,使得QTAQ=A;
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解. 求正交矩阵Q和对角矩阵A,使得QTAQ=A;
admin
2019-07-16
42
问题
设3阶实对称矩阵A的各行元素之和均为3,向量α
1
=(-1,2,-1)
T
,α
2
=(0,-1,1)
T
是线性方程组Ax=0的两个解.
求正交矩阵Q和对角矩阵A,使得Q
T
AQ=A;
选项
答案
1 对α
1
,α
2
正交化.令ξ
1
=α
1
=(-1,2,-1)
T
ξ
2
=α
2
-[*]ξ
1
=1/2(-1,0,1)
T
再分别将ξ
1
,ξ
2
,α
3
单位化,得 [*] 那么Q为正交矩阵,且Q
T
AQ=A. 2 由于A只有一个重特征值λ
1
=λ
2
=0,故要求A的3个两两正交的特征向量,只须求出A的属于二重特征值0的两个相互正交的特征向量即可.由于 ξ
2
=α
1
+2α
2
=(-1,2,-1)
T
+2(0,-1,1)
T
=(-1,0,1)
T
也是A的属于特征值0的特征向量,且α
1
⊥ξ
2
,故 ξ
1
=α
1
=(-1,2,-1)
T
,ξ
2
=(-1,0,1)
T
,ξ
3
=α
3
=(1,1,1)
T
就是A的3个两两正交的特征向量(分别属于特征值0,0,3),再将它们单位化,即令e
j
=ξ
j
/‖ξ
j
‖(j=1,2,3), 则所求的正交矩阵Q可取为Q=[e
1
e
2
e
3
],且有Q
T
AQ=diag(0,0,3),以下具体求解同解1. 3 由实对称矩阵的性质,知A的属于特征值λ
1
=λ
2
=0的特征向量ξ=(x
1
,x
2
,x
3
)
T
与属于特征值λ
3
=1的特征向量α
3
=(1,1,1)
T
正交,即 x
1
+x
2
+x
3
=0 求解此齐次方程,得其基础解系——即属于λ
1
=λ
2
=0的两个线性无关特征向量为 ξ
1
=(-1,1,0)
T
,ξ
2
=(1,1,-2)
T
ξ
1
与ξ
2
已经正交,故ξ
1
,ξ
2
,α
3
为A的3个两两正交的特征向量,再将它们单位化,便得所求的正交矩阵可取为 [*] 且使Q
T
AQ=diag(0,0,3).
解析
转载请注明原文地址:https://kaotiyun.com/show/bAJ4777K
0
考研数学三
相关试题推荐
设α1,α2,…,αn为n个n维线性无关的向量,A是n阶矩阵.证明:Aα1,Aα2,…,Aαn线性无关的充分必要条件是A可逆.
向量组α1,α2,…,αm线性无关的充分必要条件是().
设齐次线性方程组其中ab≠0,n≥2.讨论a,b取何值时,方程组只有零解、有无穷多个解?在有无穷多个解时求出其通解.
计算二重积分x2+4x+y2)dxdy,其中D是曲线(x2+y2)=a2(x2-y2)围成的区域.
就k的不同取值情况,确定方程x3-3x+k=0根的个数.
设中,哪个级数一定收敛?
设=a≠0,求n及a的值.
(1987年)下列函数在其定义域内连续的是()
[2012年]某企业为生产甲、乙两种型号的产品,投入的固定成本为10000(万元).设该企业生产甲、乙两种产品的产量分别为x(件)和y(件),且两种产品的边际成本分别为20+x/2(万元/件)与6+y(万元/件).当总产量为50件时,甲、乙两种的产
xarctan=___________.
随机试题
A.右肾为命门B.命门为两肾的总称C.两肾之间为命门D.命门为肾间动气E.命门为精室《难经》认为
《期货公司管理办法》的制定依据是《证券法》和《期货交易管理条例》等法律、行政法规。( )
私募基金的合格投资者需要满足的条件不包括()。
乙公司是苏州一家集团企业,其主营业务为原木材料的供应.其他业务为家具制造、公园设施基建工程业务等。乙公司拥有多年加工木材的经验及大型加工场所,木材产量位居全国第二。乙公司自主品牌家具在2008年成为欧洲单一品牌家具销量之首。根据上述信息可以判断,乙公司所拥
定势对迁移的影响表现为________和________两种。
在一个纸箱中装有若干黄白两色的乒乓球,且知道有5个黄色乒乓球以及摸到黄球的概率为,那么,纸箱中白色乒乓球的个数为()。
通过CATV电缆访问因特网,在用户端必须安装的设备是()。
下列关于计算机病毒的叙述中,正确的是()。
Hadhehispromise,hewouldhavemadeittoHarfordUniversity.
Alldon’thaveafreeticketmustpaytheadmissionfee.
最新回复
(
0
)