首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求圆x2+y2=1的一条切线,使此切线与抛物线y=x2一2所围面积取最小值,并求此最小值.
求圆x2+y2=1的一条切线,使此切线与抛物线y=x2一2所围面积取最小值,并求此最小值.
admin
2017-08-18
31
问题
求圆x
2
+y
2
=1的一条切线,使此切线与抛物线y=x
2
一2所围面积取最小值,并求此最小值.
选项
答案
如图4.5,圆周的参数方程为x=cosθ,y=sinθ.圆周上[*]点(cosθ,sinθ)处切线的斜率是[*],于是切线方程是 [*] 它与y=x
2
一2交点的横坐标较小者为α,较大者为β,则α,β是方程x
2
+xcotθ—2一[*]=0的根,并且切线与抛物线所围面积为 [*] 为求[*](β一α)
3
最小值,只要求(β一α)
2
最小值,由一元二次方程根与系数关系得 [*] 所以,当[*]+2=0时取最小值3.由 [*] 因此,所围面积最小值为[*] 所求切线有两条:[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/bBr4777K
0
考研数学一
相关试题推荐
设函数Fn(x)=其中n=1,2,3,…为任意自然数,f(x)为[0,+∞)上正值连续函数.求证:收敛:
已知(X,Y)为一个二维随机变量,X1=X+2Y,X2=X一2Y(X1,X2)的概率密度为f(x1,x2)分别求出X和Y的密度函数;
已知α1=(1,3,5,一1)T,α2=(2,7,a,4)T,α3=(5,17,一1,7)T,若α1,α2,α3线性相关,求α的值;
设y=y(x)是由方程y2+xy+x2一x=0确定的满足y(1)=一1的连续函数,则=_______________.
微分方程ydx—xdy=x2ydy的通解为___________.
设A是n阶正定矩阵,x是n维列向量,E是n阶单位阵,记计算PW;
设总体X的概率密度为其中μ为未知参数,且X1,X2,…,Xn,是来自总体X的一个简单随机样本.验证为μ的无偏估计量.
求直线绕z轴一周所形成的曲面介于z=2与z=4之间的体积.
顶角为60°,底圆半径为口的正圆锥形漏斗内盛满水,下接底圆半径为b(b<a)的圆柱形水桶(假设水桶的体积大于漏斗的体积),水由漏斗注入水桶,问当漏斗水平面下降速度与水桶水平面上升速度相等时,漏斗中水平面高度是多少?
设平面曲线L上一点M处的曲率半径为ρ,曲率中心为A,AM为L在点M处的法线,法线上的两点P,Q分别位于L的两侧,其中P在AM上,Q在AM的延长线AN上,若P,Q满足|AP|.|AQ|=ρ2,称P,Q关于L对称.设L:,P点的坐标为.
随机试题
在Internet网络的许多信息服务中,DNS能提供的服务是帮助用户通过()获取必要的信息。
简述李玉戏剧创作的成就。
A.粪一口传播B.飞沫传播C.血液传播D.母婴传播E.虫媒传播麻疹的主要传播途径是
急性肾炎合并急性肾功能不全时的临床表现为
A.水痘B.重症肺炎C.百日咳D.麻疹E.猩红热全身散在斑丘疹、水疱疹等特点符合
用于口腔器材灭菌系数最大的灭菌法是
下列关于无形资产的说法中,不正确的是( )。
“教育不应再限于学校的围墙之内”体现了()教育的理念。
以下不属于剪纸样式的一项是()
下列4种不同数制表示的数中,数值最大的一个是
最新回复
(
0
)