首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1=(1,2,1)T,α2=(2,3,a)T,α3=(1,a+2,一2)T,若β1=(1,3,4)T可以由α1,α2,α3线性表示,但是β2=(0,1,2)T不可以由α1,α2,α3线性表示,则a=__________。
设α1=(1,2,1)T,α2=(2,3,a)T,α3=(1,a+2,一2)T,若β1=(1,3,4)T可以由α1,α2,α3线性表示,但是β2=(0,1,2)T不可以由α1,α2,α3线性表示,则a=__________。
admin
2019-03-12
80
问题
设α
1
=(1,2,1)
T
,α
2
=(2,3,a)
T
,α
3
=(1,a+2,一2)
T
,若β
1
=(1,3,4)
T
可以由α
1
,α
2
,α
3
线性表示,但是β
2
=(0,1,2)
T
不可以由α
1
,α
2
,α
3
线性表示,则a=__________。
选项
答案
一1
解析
根据题意,β
1
=(1,3,4)
T
可以由α
1
,α
2
,α
3
线性表示,则方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=β
1
。有解,β
2
=(0,1,2)
T
不可以由α
1
,α
2
,α
3
线性表示,则方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=β
2
无解,由于两个方程组的系数矩阵相同,因此可以合并一起作矩阵的初等变换,即
因此可知,当a=一1时,方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=β有解,方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=β
2
无解,
故a=一1。
转载请注明原文地址:https://kaotiyun.com/show/bfP4777K
0
考研数学三
相关试题推荐
设a>e,0<x<y<,求证ay—ax>(cosx—cosy)axlna.
设f(x)=(Ⅰ)求f’(x);(Ⅱ)f’(x)在点x=0处是否可导?
(Ⅰ)设函数f(x)在[a,b]上连续,在(a,b)内具有二阶导数,且f(a)=f(b)=0,f(c)<0,(a<c<b).证明:至少存在一点ξ∈(a,b),使f"(ξ)>0;(Ⅱ)设h>0,f(x)在[a一h,a+h]上连续,在(a一h,a+h
设函数计算二重积分(x,y)dσ,其中D={(x,y)||x|+|y|≤2}.
某厂家生产的一种产品同时在两个市场销售,售价分别为P1和P2;销售量分别为Q1和Q2;需求函数分别为Q1=24—0.2P1,Q2=10—0.05P2;总成本函数C=35+40(Q1+Q2).试问:厂家如何确定两个市场的售价,才能使其获得的总
用泰勒公式确定下列无穷小量当x→0时关于x的无穷小阶数:(Ⅰ);(Ⅱ)∫0x(et一1—t)2dt.
设α1,α2,α3,α4为4维列向量,满足α2,α3,α4线性无关,且α1+α3=2α2.令A=(α1,α2,α3,α4),β=α1+α2+α3+α4.求线性方程组Aχ=β的通解.
已知A是3阶矩阵,A的特征值为1,—2,3.则(A*)*的特征值为________.
设y(x)为微分方程y’’-4y’+4y=0满足初始条件y(0)=1,y’(0)=2的特解,则∫01y(z)dx=______.
随机试题
早期发现大肠癌的初步筛查手段是
A.原发性高血压B.嗜铬细胞瘤C.原发性醛固酮增多症D.肾动脉狭窄E.皮质醇增多症尿中儿茶酚胺升高见于
建设项目进度计划管理和控制的特点包括( )。
下列各项中,属于由全国人民代表大会及其常务委员会制定的法是()。
甲企业有一种已经使用15年的注册商标。根据历史资料,该企业近5年使用这一商标的产品比同类产品的价格每件高1.1元,该企业每年生产150万件。该商标目前在市场上有良好趋势,产品基本上供不应求。根据预测估计,如果在生产能力足够的情况下,这种商标产品每年生产20
下列关于现场检查说法不正确的是()。
代理人可能利用其信息优势与职务便利损害企业利益、牟取私利。企业所面临的这种风险属于()。
“新国八条”已经定下了楼市调控的基调,还是有不少城市不愿意配合中央楼市调控的限购政策,迟迟不愿出台当地楼市的限购细则,这背后是有其原因的。作者在紧接这段文字后最有可能会论述()。
根据以下情境材料,回答下列问题。2019年5月7日上午10时左右,派出所民警李某接到报警称,有人拉横幅在A省甲市第一人民医院门口“维权”,围观群众很多,严重影响了医院的秩序。民警李某了解情况后随即带领四名同事赶往现场,闹事者王某的朋友帮其拉条幅站在医院门
ThetransformationofShangri-la,thisonceremotecommunityintoa【S1】ispartofanewphaseofChina’seconomicexpansion.It
最新回复
(
0
)