首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1=(1,2,1)T,α2=(2,3,a)T,α3=(1,a+2,一2)T,若β1=(1,3,4)T可以由α1,α2,α3线性表示,但是β2=(0,1,2)T不可以由α1,α2,α3线性表示,则a=__________。
设α1=(1,2,1)T,α2=(2,3,a)T,α3=(1,a+2,一2)T,若β1=(1,3,4)T可以由α1,α2,α3线性表示,但是β2=(0,1,2)T不可以由α1,α2,α3线性表示,则a=__________。
admin
2019-03-12
71
问题
设α
1
=(1,2,1)
T
,α
2
=(2,3,a)
T
,α
3
=(1,a+2,一2)
T
,若β
1
=(1,3,4)
T
可以由α
1
,α
2
,α
3
线性表示,但是β
2
=(0,1,2)
T
不可以由α
1
,α
2
,α
3
线性表示,则a=__________。
选项
答案
一1
解析
根据题意,β
1
=(1,3,4)
T
可以由α
1
,α
2
,α
3
线性表示,则方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=β
1
。有解,β
2
=(0,1,2)
T
不可以由α
1
,α
2
,α
3
线性表示,则方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=β
2
无解,由于两个方程组的系数矩阵相同,因此可以合并一起作矩阵的初等变换,即
因此可知,当a=一1时,方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=β有解,方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=β
2
无解,
故a=一1。
转载请注明原文地址:https://kaotiyun.com/show/bfP4777K
0
考研数学三
相关试题推荐
设函数则在(一∞,+∞)内
设f(x)在[0,1]上连续,在(0,1)内可导,且|f’(x)|<1,又f(0)=f(1),证明:对于x1,x2∈[0,1],有|f(x1)一f(x2)|<.
设函数f(x)有二阶连续导数,且=一1,则
设随机变量X在区间(0,1)上服从均匀分布,当X取到x(0<x<1)时,随机变量Y等可能地在(x,1)上取值,试求:(X,Y)的联合概率密度;
设随机变量序列X1,…,Xn,…相互独立且都服从正态分布N(μ,σ2),记Yn=X2n一X2n-1,根据辛钦大数定律,当n→∞时Yi2依概率收敛于_______.
设A是一个n阶方阵,满足A2=A,R(A)=r,且A有两个不同的特征值.(Ⅰ)试证A可对角化,并求对角阵A;(Ⅱ)计算行列式|A-2E|.
已知三元二次型xTAx的平方项系数都为0,α=(1,2,—1)T满足Aα=2α.①求xTAx的表达式.②求作正交变换x=Qy,把xTAx化为标准二次型。
设二次型f(x1,x2,x3)=(x1,x2,x3)已知它的秩为1.①求x和二次型f(x1,x2,x3)的矩阵.②作正交变换将f(x1,x2,x3)化为标准二次型.
已知α=(1,-3,2)T,β=(0,1,2)T,设矩阵A=αβT-E,则矩阵A最大特征值的特征向量是()
求微分方程y’’+2x(y’)2=0满足初始条件y(0)=1,y’(0)=1的特解.
随机试题
我国专利法规定,发明专利的保护期限与实用新型的保护期限分别为【】
患者,男,58岁。因心前区反复发作性疼痛1年就诊。患者经治疗以后,心源性休克纠正。10小时后突然心脏骤停死亡。其最可能的原因是
重点监测关键区的原则是指,对()的部位应重点进行监测。
顺查法主要适用于规模较大、业务量较大的大型单位和内部控制比较健全、业务技术基础较好的被审计单位。()
设计小组活动时需要考虑的因素有()。
实习生张明的第三次课,课的主要内容是太极拳(复习)和100米测试,上课前,他把写好的教案送给指导教师郭老师审查,郭老师仔细看了整个教案,当看到“预计运动负荷脉搏曲线图”(图1)中所提供的相关信息后,马上对张明说:“你的基本部分安排有问题……”。问题:
信访是一种()。
用IE浏览器打开:http://localhost:65531/ExamWeb/index.htm,浏览有关“OSPF路由协议”的网页,将该页内容以文本文件的格式保存到考生目录下,文件名为“TestIe.txt”。
Whichofthefollowingistrueaboutonlinelearning?
Anoldsongsaysthat"lovemakestheworldgoaround."Ifyou【C1】______AmericansonValentine’sDay,youcanbelieveit.Thewh
最新回复
(
0
)