首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1=(1,2,1)T,α2=(2,3,a)T,α3=(1,a+2,一2)T,若β1=(1,3,4)T可以由α1,α2,α3线性表示,但是β2=(0,1,2)T不可以由α1,α2,α3线性表示,则a=__________。
设α1=(1,2,1)T,α2=(2,3,a)T,α3=(1,a+2,一2)T,若β1=(1,3,4)T可以由α1,α2,α3线性表示,但是β2=(0,1,2)T不可以由α1,α2,α3线性表示,则a=__________。
admin
2019-03-12
89
问题
设α
1
=(1,2,1)
T
,α
2
=(2,3,a)
T
,α
3
=(1,a+2,一2)
T
,若β
1
=(1,3,4)
T
可以由α
1
,α
2
,α
3
线性表示,但是β
2
=(0,1,2)
T
不可以由α
1
,α
2
,α
3
线性表示,则a=__________。
选项
答案
一1
解析
根据题意,β
1
=(1,3,4)
T
可以由α
1
,α
2
,α
3
线性表示,则方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=β
1
。有解,β
2
=(0,1,2)
T
不可以由α
1
,α
2
,α
3
线性表示,则方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=β
2
无解,由于两个方程组的系数矩阵相同,因此可以合并一起作矩阵的初等变换,即
因此可知,当a=一1时,方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=β有解,方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=β
2
无解,
故a=一1。
转载请注明原文地址:https://kaotiyun.com/show/bfP4777K
0
考研数学三
相关试题推荐
设g(x)=且f(x)处处可导,求f[g(x)]的导数.
设某产品的需求函数Q=Q(P)是单调减少的,收益函数R=PQ,当价格为P0,对应的需求量为Q0时,边际收益R’(Q0)=2,而R’(P0)=一150,需求对价格的弹性EP满足|EP|=.求P0和Q0.
计算下列二重积分:(Ⅰ)|x2+y2一1|dσ,其中D={(x,y)|0≤x≤l,0≤y≤};(Ⅱ)|sin(x一y)|dσ,其中D={(x,y)|0≤x≤y≤2π}.
设某商品的需求量D和供给量S各自对价格P的函数为D(P)=,S(P)=6P,且P是时间t的函数,并满足方程=k[D(P)一s(P)],其中a,b,k为正的常数.求:(Ⅰ)需求量与供给量相等时的均衡价格P3;(Ⅱ)当t=0,P=1时的价格函数P(t);(Ⅲ
设f(χ)在[0,1]上连续,f(1)≠0,∫01f(χ)dχ=0,则Ф(χ)=χf(χ)+∫0χf(t)dt出在闭区间[0,1]上().
下列矩阵中不相似于对角矩阵的是
设二次型xTAx=ax12+2x22-x32+8x1x2+2bx1x3+2cx2x3,实对称矩阵A满足AB=O,其中B=(Ⅰ)用正交变换将二次型化为标准形,并写出所作的正交变换:(Ⅱ)判断矩阵A与B是否合同,并说明理由。
设A为三阶矩阵,特征值为λ1=λ2=1,λ3=2,其对应的线性无关的特征向量为α1,α2,α3,令P1=(α1-α3,α2+α3,α3),则P1-1A*P1=().
设y=ex为微分方程xy’+P(x)y=x的解,求此微分方程满足初始条件y(ln2)=0的特解.
将下列函数在指定点处展开为泰勒级数:在x=1处;
随机试题
最大允许误差可以用____________表示。
( )是工程建设定额中分项最细、定额子目最多的一种定额,也是建设工程定额中的基础性定额。
某企业纳税地点在县城、镇,该企业的税金为( )。
下列关于注册会计师对进一步审计程序的性质的选择中,不恰当的是()。
制造资源计划是…企业制定和控制的生产计划所确定的,而DRP则是在一种独立的环境下运作,由不确定的顾客需求来确定存货需求。()
美育指的就是艺术教育。()
宋代法律规定,犯人推翻口供,且“所翻情节,实碍重罪”时,案件则改由另一法官或另一司法机关审理。这种诉讼制度被称作()。
设随机变量X服从参数为1的指数分布,随机变量函数Y=1-e-X的分布函数为FY(y),则=______。
以下关于单选按钮和复选框的叙述中,正确的是()。
WhatkindoffamilywasLincolnbornin?Hewasbornina______.
最新回复
(
0
)