首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知向量组α1,α2,α3,α4线性无关。则向量组
已知向量组α1,α2,α3,α4线性无关。则向量组
admin
2018-07-31
19
问题
已知向量组α
1
,α
2
,α
3
,α
4
线性无关。则向量组
选项
A、α
1
+α
2
,α
2
+α
3
,α
3
+α
4
,α
4
+α
1
,线性无关.
B、α
1
—α
2
,α
2
—α
3
,α
3
—α
4
,α
4
—α
1
,线性无关.
C、α
1
+α
2
,α
2
+α
3
,α
3
+α
4
,α
4
—α
1
,线性无关.
D、α
1
+α
2
,α
2
+α
3
,α
3
—α
4
,α
4
—α
1
,线性无关.
答案
C
解析
记(C)中的4个向量依次为β
1
,β
2
,β
3
,β
4
,则由已知,有
[β
1
β
2
β
3
β
4
]=[α
1
α
2
α
3
α
4
]
由于α
1
,α
2
,α
3
,α
4
线性无关,且上式最右边的矩阵的秩为4,于是知r[β
1
β
2
β
3
β
4
]=r[α
1
α
2
α
3
α
4
]=4。故β
1
,β
2
,β
3
,β
4
线性无关,(C)正确.
转载请注明原文地址:https://kaotiyun.com/show/bwg4777K
0
考研数学一
相关试题推荐
[*]
设f(x)在[0,a]上一阶连续可导,f(0)=0.令.
设f(x)有界,且f’(x)连续,对任意的x∈(一∞,+∞)有|f(x)+f’(x)|≤1.证明:|f(x)|≤1.
设A为m阶正定矩阵,B为m×n阶实矩阵.证明:BTAB正定的充分必要条件是r(B)=n.
设二次型f=2x12+2x22+ax32+2x1x2+2x1x3+2x2x3经过正交变换X=QY化为标准形f=y12+y22+4y32,求参数a,b及正交矩阵Q.
设A=(1)求常数a,b,c;(2)判断A是否可对角化,若可对角化,求可逆矩阵P,使得P-1AP为对角矩阵.若不可对角化,说明理由.
设矩阵A=为A*对应的特征向量.(1)求a,b及α对应的A*的特征值,(2)判断A可否对角化.
设n阶方阵A的每行元素之和为a,|A|≠0,则(1)a≠0;(2)A-1的每行元素之和为a-1.
设A=(aij)为n阶方阵,证明:对任意的n维列向量X,都有XTAX=0,A为反对称矩阵.
随机试题
结构化程序设计的核心和基础是()。
疟原虫肾病棘球蚴破裂引起休克
A.葛根芩连汤B.藿香正气散C.痛泻要方D.芍药汤肝郁泄泻的主方是
一般在妊娠几周后发现臀位可采用膝胸卧位纠正
患者25岁,急产,胎儿娩出后产妇突然发生呼吸困难、紫绀、心悸、血压下降,迅速出现循环衰竭、休克及昏迷状态。该产妇最大可能是
下列陈述中正确的是()。
建构主义认为教学过程是教师和学生对世界的意义进行合作性建构的过程,因此他们非常强调的一种学习方式是()
利用财务报告分析进行控制属于()。
发挥人的主观能动作用的基本途径是()
Toparaphrase18th-centurystatesmanEdmundBurke,"allthatisneededforthetriumphofamisguidedcauseisthatgoodpeople
最新回复
(
0
)