首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,r(A)<n,则A必有特征值_______,且其重数至少是_______.
设A是n阶矩阵,r(A)<n,则A必有特征值_______,且其重数至少是_______.
admin
2019-01-12
38
问题
设A是n阶矩阵,r(A)<n,则A必有特征值_______,且其重数至少是_______.
选项
答案
λ=0;n-r(A)
解析
r(A)<
|A|=0
λ=0必是A的特征值.
由r(A)<n
Ax=0有非0解.设η
1
,η
2
,…,η
n-r(A)
是Ax-0的基础解系,则Aη
j
=0=0η
j
,即η
j
(j=1,2,…,n-r(A))是λ=0的特征向量.
因此λ=0有n-r(A)个线性无关的特征向量.从而λ=0至少是矩阵A的n-r(A)重特征值.
注意:k重特征值至多有k个线性无关的特征向量.
转载请注明原文地址:https://kaotiyun.com/show/cCM4777K
0
考研数学一
相关试题推荐
设直线L过A(1,0,0),B(0,1,1)两点,将L绕z轴旋转一周得到曲面∑,∑与平面z=0,z=2所围成的立体为Ω.求曲面∑的方程;
设在yOz坐标平面上有一已知曲线C,其方程为f(y,z)=0.将此曲线绕y轴旋转一周,得到一个以y轴为轴的旋转曲面.试求此旋转曲面的方程.
设随机变量X和Y相互独立,且均服从(0,1)上的均匀分布,则下列随机变量中仍服从某区间上均匀分布的是().
设η*是非齐次方程组AX=b的一个特解,ξ1,ξ2,…,ξn-r是对应齐次方程组AX=0的基础解系.令η0=η*,η1=ξ1+η*,η2=ξ2+η*,…,ηn-r=ξn-r+η*.证明:非齐次方程的任一解η都可表示成η=μ0η0+μ1η1+μ2η2+…+μ
设A是3×3矩阵,α1,α2,α3是三维列向量,且线性无关,已知Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2.求|A|.
设B是n×n矩阵,A是n阶正定阵,证明:BTAB也是正定阵的充要条件为r(B)=n.
已知A,B均是m×n矩阵,r(A)=n―s,r(B)=n-r,且r+s>n,证明:线性方程组AX=0,BX=0有非零公共解.
已知非齐次线性方程组求解方程组(Ⅰ),用其导出组的基础解系表示通解.
设函数f(x)=x2,x∈[0,π],将f(x)展开为以2π为周期的傅里叶级数,并证明
求曲面积分+y2dzdx+z2dxdy,其中S是长方体Ω:0≤x≤a,0≤y≤b,0≤z≤c的表面外侧.
随机试题
社会工作者通过书信的形式与即将假释出狱的服务对象建立联系,这在司法矫正的过程中属于()。
男性,25岁,双上肢烫伤,急诊入院。其烧伤面积为
治疗盗汗阴虚火旺证的主方是
女性,28岁。近一月以来,口腔溃疡反复发作,心烦,夜晚难以入睡,大便干。1~2日一行。口干不喜饮,小便黄,舌质红,苔腻,脉数。熟大黄的性状鉴别特征是()。
在监理规划的( )内容中应当包含有关监理资料管理和报告制度等内容。
有下列情形之一的证券公司不得申请注册登记为保荐机构()
关于技术转移与技术扩散、技术转让、技术引进之间关系的说法,正确的有()。
某用户是一个垂直管理的机构,需要建设一个视频会议系统,基本需求是:一个中心会场,18个一级分会场,每个一级分会场下面有3~8个二级分会场,所有通信线路为4Mbps,主会场、一级分会场为高清设备,可在管辖范围内自由组织各种规模的会议,也可在同级之间协商后组织
在结构化分析方法中,依据______来进行接口设计。
Thegeographicallocationofacountryanditsphysical【C1】______areveryimportanttoitsdevelopmentand【C2】______.TheUnit
最新回复
(
0
)