首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续,f(0)=0,∫01f(x)dx=0.证明:存在ξ∈(0,1),使得 ∫0ξf(x)dx=ξf(ξ).
设f(x)在[0,1]上连续,f(0)=0,∫01f(x)dx=0.证明:存在ξ∈(0,1),使得 ∫0ξf(x)dx=ξf(ξ).
admin
2018-05-21
39
问题
设f(x)在[0,1]上连续,f(0)=0,∫
0
1
f(x)dx=0.证明:存在ξ∈(0,1),使得
∫
0
ξ
f(x)dx=ξf(ξ).
选项
答案
[*] 因为f(x)在[0,1]上连续,所以φ(x)在[0,1]上连续,在(0,1)内可导,又φ(0)=0,φ(1)=∫
0
1
f(x)dx=0,由罗尔定理,存在ξ∈(0,1), 使得φ’(ξ)=0,而φ’(x)=[*],所以∫
0
ξ
f(x)dx=ξf(ξ).
解析
转载请注明原文地址:https://kaotiyun.com/show/cKr4777K
0
考研数学一
相关试题推荐
=_________.
设函数f(x)=f(x)在(一∞,+∞)上连续,则A=_________.
设α1,α2,α3,α4,β为四维列向量组,A=(α1,α2,α3,α4),已知方程组Ax=β的通解是(一1,1,0,2)T+k(1,一1,2,0)T.(Ⅰ)β能否由α1,α2,α3线性表示?(Ⅱ)求α1,α2,α3,α4,β的一个极大线性无关组.
设L是不经过点(2,0),(一2,0)的分段光滑的简单闭曲线,试就L的不同情况计算曲线积分:L取正向.
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3.问A能否相似对角化?若能,请求出相似变换矩阵P与对角阵A;若不能,请说明理由.
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3.求矩阵A的特征值;
设可对角化求常数a;
设a≠0,b>0N两个常数,则为()
若矩阵A=相似予对角矩阵A,试确定常数口的值;并求可逆矩阵P使P—1AP=A.
设f(x,y)=,试讨论f(x,y)在点(0,0)处的连续性,可偏导性和可微性.
随机试题
路基施工段落较短时,分层压实度检测结果应全部符合要求,且样本数量不少于()个。
根据土壤质地,土壤可分为______、_______和______。
腺垂体分泌的促激素为
狂犬病属于典型的
A.降香B.鹿角霜C.海金沙D.西红花E.紫河车宜后下的饮片是()。
()是指在中国境外注册、在中国香港上市,但主要业务在中国内地或大部分股东权益来自中国内地公司的股票。
研究认为,最佳的过度学习,是学习的熟练程度达到__________的学习。
我国的民歌文化源远流长。下列选项中民族与民歌对应正确的是()。
更适合于开发互联网络应用的程序设计语言是_______。
Peopleinsunny,outdoorsystates—Louisiana,Hawaii,Florida—saytheyarethehappiestAmericans,andresearchersthinktheykno
最新回复
(
0
)