首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
A=,正交矩阵Q使得QTAQ是对角矩阵,并且Q的第1列为(1,2,1)T.求a和Q.
A=,正交矩阵Q使得QTAQ是对角矩阵,并且Q的第1列为(1,2,1)T.求a和Q.
admin
2016-10-21
78
问题
A=
,正交矩阵Q使得Q
T
AQ是对角矩阵,并且Q的第1列为
(1,2,1)
T
.求a和Q.
选项
答案
Q
-1
AQ=Q
T
AQ是对角矩阵,说明Q的列向量都是A的特征向量,于是(1,2,1)
T
也是A的特征向量. [*] (1,2,1)
T
和(2,5+a,4+2a)
T
相关,得a=-1,并且(1,2,1)
T
的特征值为2. [*] A的特征值为2,5,-4.下面来求它们的单位特征向量.α
1
=[*] (1,2,1)
T
属于2的单位特征向量. A-5E=[*] 则(1,-1,1)
T
是属于5的特征向量,单位化得α
2
=[*](1,-1,1)
T
. A+4E=[*] 则(1,0,-1)
T
是属于-4的特征向量,单位化得α
3
=[*](1,0,-1)
T
. 则Q=(α
1
,α
2
,α
3
).
解析
转载请注明原文地址:https://kaotiyun.com/show/cXt4777K
0
考研数学二
相关试题推荐
已知函数求函数图形的渐近线。
验证函数在-1≤x≤1上是否满足拉格朗日定理,如满足,求出满足定理的中值ε。
设f(x)在[0,2]上连续,且f(0)=0,f(1)=1.证明:存在c∈(0,1),使得f(c)=1-2c;存在ξ∈[0,2],使得2f(0)+f(1)+3f(2)=6f(ξ).
设f(x)x/(1-ex/(1-x)),求f(x)的间断点,并判断其类型.
设f(x)在[a,b]上连续,任取xi∈[a,b](i=1,2,…,n),任取ki>0(i=1,2,…,n),证明:存在ξ∈[a,b],使得k1f(x1)+k2f(x2)+…+knf(xn)=(k1+k2+…+kn)f(ξ).
计算,其中D是由抛物线y2=x与直线y=x所围成的区域。
对于一切实数t,函数f(t)连续的正函数且可导,同时有f(-t)=f(t),又函数g(x)=∫-aa|x-t|f(t)dt,a>0,x∈[-a,a]证明g’(x)是单调增加的。
设非齐次线性微分方程y’+P(x)y=Q(x)有两个不同的解y1(x),y2(x),C为任意常数,则该方程的通解为________。
某厂家生产的一种产品同时在两个市场销售,售价分别为P1和P2;销售量分别为Q1和Q2;需求函数分别为Q1=24-0.2P1,Q2=10-0.05P2总成本函数为C=35+40(Q1+Q2)试问:厂家如何确定两个市场的产品售价,使其获得的总利润最
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:A2=A的充要条件是ξTξ=1;
随机试题
下列不属于营销类人员的个性特点的是
下列细菌不形成芽胞的是
6个月女婴,4月份入院,发热2天。体温38,0℃,咳嗽有痰,1天来惊厥4~5次,发作时两眼上窜,四肢抽动,持续1~2分钟,抽后神志清。体检:一般情况好,前囟2.5cm×2.5cm,平坦,枕骨按之有乒乓球感,双肺有中、小水泡音。
评价颌骨骨折复位成功的标准是
患者,女性,23岁。因库欣综合征入院,查体:面部皮肤红而薄,头发稀疏,血压180/100mmHg,肥胖。护士应指导患者饮食的注意点是
A上市公司2×17年有关经济业务发生如下:(1)1月5日,委托证券公司从股票交易所购入B上市公司股票100000股,每股购买价款为5.5元(其中包含已宣告但尚未发放的现金股利0.2元/股)。另支付相关交易费用30000元,取得的增值税专用发票上注明的
(2017·山东)依据奥苏贝尔的有意义学习理论,学习材料的逻辑意义能确保产生有意义学习。()
把戏:伎俩:手段
★现在的年轻人越来越不健康了。()
A、90.B、190.C、120.D、1,200.B
最新回复
(
0
)