首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上连续,在(a,b)内可导,且f’(x)≠0,试证存在ξ,η∈(a,b),使
设f(x)在[a,b]上连续,在(a,b)内可导,且f’(x)≠0,试证存在ξ,η∈(a,b),使
admin
2019-03-22
86
问题
设f(x)在[a,b]上连续,在(a,b)内可导,且f’(x)≠0,试证存在ξ,η∈(a,b),使
选项
答案
证一 本题要证的结论中出现两个中值ξ和η.这类问题首先将含有ξ和η的项分别移到等式两端,再考虑应用微分中值定理.先用哪个微分中值定理呢?这就要看变形后的等式中哪一端出现拉格朗日中值定理或柯西中值定理一端的形式.变形后,得到 [*] 观察上式的左端,它恰是对f(x)在[a,b]上使用拉格朗日中值定理的结果: f(b)—f(a)=f’(ξ)(b-a) (a<ξ<b). 于是首先想到使用拉格朗日中值定理,得到 f(b)-f(a)=f’(ξ)(b-a) (a<ξ<b). ② 其次再考察式①的右端,注意到[*]它是两个函数f(x)与e
x
在x=η处的导数之比.这自然又使人想到用柯西中值公式: [*] 由式②与式③即得[*]即[*] 证二 分离中值将待证等式改写为 [*] 因中值η的导数值在此中值等式的右端有f’(η)及(e
η
)’=e
η
,且分别在分子、分母上可将f(x),e
x
这两个函数视为f(x),g(x)=e
x
,即式④中f’(η)/e
η
是对f(x)和e
x
使用柯西中值定理的结果.对g(x)=e
x
和f(x)在[a,b]上使用该定理,得到 [*] 将式⑤代入式④易看出式④中f’(ξ)应视为对f(x)在[a,b]上使用拉格朗日中值定理的结果,于是对f(x)在[a,b]上使用该定理,得到 f(b)—f(a)=f’(ξ)(b-a), ξ∈(a,b), ⑥ 将式⑥代入式⑤,得到 f’(ξ)(b-a)/(e
b
一e
a
)=f’(η)/e
η
. 由题设有f’(x)≠0,故f’(η)≠0,从而 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/cYP4777K
0
考研数学三
相关试题推荐
设(a2n—1+a2n)收敛,则()
若级数an收敛,bn发散,则()
设矩阵相似,求x,y;并求一个正交矩阵P,使P—1AP=Λ。
二元函数f(x,y)在点(0,0)处可微的一个充分条件是()
将函数f(x)=展开成x一1的幂级数,并指出其收敛区间。
判断级数的敛散性,若级数收敛,判断其是绝对收敛还是条件收敛.
设f(x,y)=讨论f(x,y)在(0,0)处的连续性、可偏导性与可微性.
设数列{xn}满足:x1>0,(n=1,2,…).证明:{xn}收敛,并求
设证明:数列{an)有界.
已知对于n阶方阵A,存在自然数k,使得Ak=O,试证明矩阵E-A可逆,并写出其逆矩阵的表达式(E为n阶单位阵).
随机试题
郑某等人多次预谋通过爆炸抢劫银行运钞车。为方便跟踪运钞车,郑某等人于2012年4月6日杀害一车主,将其面包车开走(事实一)。后郑某等人制作了爆炸装置,并多次开面包车跟踪某银行运钞车,了解运钞车到某储蓄所收款的情况。郑某等人摸清运钞车情况后,于同年6月8日将
设A是m×n的非零矩阵,B是n×l非零矩阵,满足AB=0,以下选项中不一定成立的是()。
图示三铰支架上作用两个大小相等、转向相反的力偶m1和m2,其大小均为100kN·m,支架重力不计。支座B的反力RB的大小和方向为( )。
能反映一个组织系统中各项工作之间逻辑关系的组织工具是()
某连锁娱乐企业是增值税一般纳税人,主要经营室内游艺设施。2021年11月经营业务如下:(1)当月游艺收入价税合计636万元,其中门票收入为300万元、游戏机收入为336万元。当月通过税控系统实际开票价款为280万元。(2)当月以融资性售后回租形式融资,
1990年,我们党的十四大报告进一步系统地阐述了建设有中国特色社会主义理论的主要内容。( )
根据《合同法》规定,违反合同一方要承担违约责任,下列不属于承担违约责任方式的是()。
8个人比赛国际象棋,约定每两人之间都要比赛一局,胜者得2分,平局得1分,负的不得分。在进行了若干局比赛之后,发现每个人的分数都不一样。问最多还有几局比赛没比?()
数据字典是各类数据描述的集合,它通常包括5个部分,即数据项、数据结构、数据流、【】和处理过程。
Lightlevelsarecarefullycontrolledtofallwithinanacceptablelevelfor______readingconvenience.
最新回复
(
0
)