首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
n维向量α1,α2,…,α3,线性无关的充要条件是( ).
n维向量α1,α2,…,α3,线性无关的充要条件是( ).
admin
2021-05-21
31
问题
n维向量α
1
,α
2
,…,α
3
,线性无关的充要条件是( ).
选项
A、存在不全为0的k
1
,k
2
,…,k
s
,使后k
1
α
1
+k
2
α
2
+…+k
s
α
s
≠O.
B、添加向量β后,α
1
,α
2
,…,α
s
,β线性无关.
C、去掉任一向量α
i
后,α
i
,…,α
i-1
α
i+1
……,α
s
线性无关.
D、α
1
,α
2
一α
1
,α
3
一α
1
…,α
3
一α
1
线性无关.
答案
D
解析
若向培组中有非零向量,必有不全为0的数k
1
,k
2
,…,k
s
,使k
1
α
1
+k
2
a
2
+…+k
s
a
s
,≠0,但α
1
,α
2
,…,α
s
,不一定线性无关,故不能选A,B仅是充分条件,并不是必要条件.例如一组基是线性无关的,此时已不存在β,在添加β仍能保证向量组线性无关.C只是必要条件,并不是充分条件,一个向量组线性无关,那么其任何一个部分组都是线性无关的.由于初等变换不改变向量组的秩,D相当于对α
1
,α
2
,…,α
s
为列的矩阵作初等变换所得的结果.可见r(α
1
,α
2
,…,a
s
)=r(α
1
,α
2
一α
1
一α
s
一α
1
),因此r(α
1
,α
2
,…,α
1
)=s
r(α
1
,α
2
一α
1
,…,α
s
一α
1
)=s.故选D.
转载请注明原文地址:https://kaotiyun.com/show/cdx4777K
0
考研数学三
相关试题推荐
设n维向量α1,α2……αs的秩为r,则下列命题正确的是
2
设n维列向量α1,α2,α3线性无关,向量β1可由α1,α2,α3线性表示,向量尼不可由α1,α2,α3线性表示,则对任意常数k,必有().
设矩阵有解但不唯一。(I)求a的值;(Ⅱ)求可逆矩阵P,使得P一1AP为对角矩阵;(Ⅲ)求正交矩阵Q,使得QTAQ为对角矩阵。
从抛物线y=x2—1的任意一点P(t,t2—1)引抛物线y=x2的两条切线。(Ⅰ)求这两条切线的切线方程;(Ⅱ)证明该两条切线与抛物线y=x2所围面积为常数.
设A为三阶实对称矩阵,ξ1=为方程组AX=0的解,ξ2=为方程组(2E—A)X=0的一个解,|E+A|=0,则A=.
设f(x)在[a,b]上二阶可导,且f(x)>0,下面不等式f(a)(b一a)<∫abf(x)dx<(b—a)成立的条件是()
设线性无关的函数y1(x),y2(x),y3(x)均是方程y"+p(x)y’+q(x)y=f(x)的解,C1,C2是任意常数,则该方程的通解是()
(1996年)设某种商品的单价为P时,售出的商品数量Q可以表示成.其中a、b、c均为正数,且a>bc.1)求P在何范围变化时,使相应销售额增加或减少;2)要使销售额最大,商品单价P应取何值?最大销售额是多少?
随机试题
古车上的篷盖有的用席篷,有的用麻布之类制作,顶上比较陡,到篷边上挑起而成为曲线。这样的好处,一是可以不挡住乘车人的视线,二是可以使顶篷一卜的雨水排得更远。这段话的主要内容是()。
划线钻孔时,一般要在孔的中心位置()。
运动后发生腰部绞痛、肉眼血尿最常见于
冠状缝和矢状缝等多条颅缝同时出现早闭矢状缝早闭
下列关于卵巢癌的说法不正确的是下列哪一选项?()
最常见的偏头痛为()
我国《票据法》中所规定的非票据关系有()。
(2011年考试真题)企业溢价发行股票发生的手续费、佣金应从溢价中抵扣,溢价金额不足抵扣的,调整留存收益。()
电压变化主要是受有功功率分布的影响。()
当两个变量的相关系数,r=1时,这两个变量的相关散点图形状为
最新回复
(
0
)