首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B为三阶矩阵,且AB=A-B,若λ1,λ2,λ3为A的三个不同的特征值,证明: (1)AB=BA; (2)存在可逆矩阵P,使得P-1AP,P-1BP同时为对角矩阵.
设A,B为三阶矩阵,且AB=A-B,若λ1,λ2,λ3为A的三个不同的特征值,证明: (1)AB=BA; (2)存在可逆矩阵P,使得P-1AP,P-1BP同时为对角矩阵.
admin
2020-03-10
103
问题
设A,B为三阶矩阵,且AB=A-B,若λ
1
,λ
2
,λ
3
为A的三个不同的特征值,证明:
(1)AB=BA;
(2)存在可逆矩阵P,使得P
-1
AP,P
-1
BP同时为对角矩阵.
选项
答案
(1)由AB=A—B得A—B—AB+E=E,(E一B)(E+A)=E, 即E—B与E+A互为逆矩阵,于是(E—B)(E+A)=E=(E+A)(E—B), 故AB=BA. (2)因为A有三个不同的特征值λ
1
,λ
2
,λ
3
,所以A可以对角化,设A的三个线性无关的特征向量为ξ
1
,ξ
2
,ξ
3
,则有A(ξ
1
,ξ
2
,ξ
3
)=(ξ
1
,ξ
2
,ξ
3
)diag(λ
1
,λ
2
,λ
3
), BA(ξ
1
,ξ
2
,ξ
3
)=B(ξ
1
,ξ
2
,ξ
3
)diag(λ
1
,λ
2
,λ
3
), AB(ξ
1
,ξ
2
,ξ
3
)=B(ξ
1
,ξ
2
,ξ
3
)diag(λ
1
,λ
2
,λ
3
),于是有 ABξ
i
=λ
i
Bξ
i
,i=1,2,3. 若Bξ
i
≠0,则B
i
是A的属于特征值λ
i
的特征向量,又λ
i
为单根,所以有Bξ
i
=μ
i
ξ
i
; 若Bξ
i
=0,则ξ
i
是B的属于特征值0的特征向量.无论哪种情况,B都可以对角化,而且ξ
i
是B的特征向量,因此,令P=(ξ
1
,ξ
2
,ξ
3
),则P
-1
AP,P
-1
卯同为对角阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/cfD4777K
0
考研数学三
相关试题推荐
设,其中a,b为常数,则().
设常系数线性微分方程y’’+ay’+by=0的通解为y=e-x(C1cosx+C2sinx),其中C1,C2是任意常数,则a+b等于()
设A=E一2ξξT,其中ξ=(x1,x2,…,xn)T,且有ξTξ=1。则①A是对称矩阵;②A2是单位矩阵;③A是正交矩阵;④A是可逆矩阵。上述结论中,正确的个数是()
已知r(a1,a2,a3)=2,r(a2,a3,a4)=3,证明:a1能由a2,a3线性表示;
设有平面闭区域,D={(x,y)|一a≤x≤a,x≤y≤a},D1={(x,y)|0≤x≤a,x≤y≤a},则(xy+cosxsiny)dxdy=()
设函数f(x,y)连续,则二次积分f(x,y)dy等于()
设矩阵A=(a1,a2,a3,a4),其中a2,a3,a4线性无关,a1=2a2一a3,向量b=a1+a2+a3+a4,求方程组Ax=b的通解。
差分方程△2yt-yt=2t的通解为__________。
假设随机变量X与Y相互独立,X服从参数为λ的指数分布,Y的分布律为P{Y=1}=P{Y=一1}=,则X+Y的分布函数()
已知函数f(u,υ)具有连续的二阶偏导数,f(1,1)=2是f(u,υ)的极值,已知z=f[(x+y),f(x,y)]。求
随机试题
患者朱某因阑尾炎住院,医生甲认为应当立即手术,朱某不同意,要求保守治疗。至第二天晚间,发生阑尾炎穿孔,急行手术。术者医生乙告知患者,由于没及时手术,已形成严重腹膜炎,后遗症难免。术后几天中,朱某一直腹痛。主治医生丙认为是腹膜炎所致,未予特殊处理。后发现是腹
[*]
CT值是指
急性尿潴留病因中,属于机械性梗阻的是
隧道钻爆法开挖时,导火索是最常用的起爆品,导火索需要的长度根据炮工撤离现场的时间来确定,一般燃烧速度是()cm/s。
下列关于收入的表述中,正确的是()。
甲公司为上市公司,2012~2016年发生的有关业务资料如下。(1)2012年1月1日,甲公司以银行存款2400万元投资乙公司,持股比例为20%,对乙公司具有重大影响。当日乙公司可辨认净资产的公允价值为10000万元,公允价值与账面价值相等。(2)20
营养标签中营养成分含量的比较常以()作为参考。
新闻:内幕
A、 B、 C、 D、 E、 A
最新回复
(
0
)