首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B为三阶矩阵,且AB=A-B,若λ1,λ2,λ3为A的三个不同的特征值,证明: (1)AB=BA; (2)存在可逆矩阵P,使得P-1AP,P-1BP同时为对角矩阵.
设A,B为三阶矩阵,且AB=A-B,若λ1,λ2,λ3为A的三个不同的特征值,证明: (1)AB=BA; (2)存在可逆矩阵P,使得P-1AP,P-1BP同时为对角矩阵.
admin
2020-03-10
115
问题
设A,B为三阶矩阵,且AB=A-B,若λ
1
,λ
2
,λ
3
为A的三个不同的特征值,证明:
(1)AB=BA;
(2)存在可逆矩阵P,使得P
-1
AP,P
-1
BP同时为对角矩阵.
选项
答案
(1)由AB=A—B得A—B—AB+E=E,(E一B)(E+A)=E, 即E—B与E+A互为逆矩阵,于是(E—B)(E+A)=E=(E+A)(E—B), 故AB=BA. (2)因为A有三个不同的特征值λ
1
,λ
2
,λ
3
,所以A可以对角化,设A的三个线性无关的特征向量为ξ
1
,ξ
2
,ξ
3
,则有A(ξ
1
,ξ
2
,ξ
3
)=(ξ
1
,ξ
2
,ξ
3
)diag(λ
1
,λ
2
,λ
3
), BA(ξ
1
,ξ
2
,ξ
3
)=B(ξ
1
,ξ
2
,ξ
3
)diag(λ
1
,λ
2
,λ
3
), AB(ξ
1
,ξ
2
,ξ
3
)=B(ξ
1
,ξ
2
,ξ
3
)diag(λ
1
,λ
2
,λ
3
),于是有 ABξ
i
=λ
i
Bξ
i
,i=1,2,3. 若Bξ
i
≠0,则B
i
是A的属于特征值λ
i
的特征向量,又λ
i
为单根,所以有Bξ
i
=μ
i
ξ
i
; 若Bξ
i
=0,则ξ
i
是B的属于特征值0的特征向量.无论哪种情况,B都可以对角化,而且ξ
i
是B的特征向量,因此,令P=(ξ
1
,ξ
2
,ξ
3
),则P
-1
AP,P
-1
卯同为对角阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/cfD4777K
0
考研数学三
相关试题推荐
=_____________________。
求函数的间断点,并判别其类型。
设函数f(x)在开区间(a,b)内可导,证明当导函数f’(x)在(a,b)内有界时,函数f(x)在(a,b)内也有界。
设向量组I:α1,α2,…,αr可由向量组Ⅱ:β1,β2,…,βs线性表示,则()
假设A是n阶方阵,其秩r
现有四个向量组①(1,2,3)T,(3,一l,5)T,(0,4,一2)T,(1,3,0)T;②(a,l,b,0,0)T,(c,0,d,2,0)T,(e,0,f,0,3)T;③(a,l,2,3)T,(b,1,2,3)T,(c,3,4,5)T,(d,0,
已知m个向量α1,αm线性相关,但其中任意m一1个向量都线性无关,证明:如果等式k1α1+…+kmαm=0成立,则系数k1,…,km或者全为零,或者全不为零;
已知极坐标系下的累次积分I=f(rcosθ,rsinθ)rdr,其中a>0为常数,则I在直角坐标系下可表示为__________。
已知二次型f(x1,x2,x3)=(1—a)x12+(1—a)x22+2x32+2(1+a)x1x2的秩为2。求a的值;
若f(x)在(x,b)内单调有界,则f(x)在(x,b)内间断点的类型只能是()
随机试题
A.Howaboutyourpresentation?B.Heneedsitfortomorrow’spresentation.C.Ithinkso.
有关超声的原理,下列哪项正确
A、高流量面罩吸氧B、4~6L/分经酒精湿化吸氧C、2~4L/分鼻导管吸氧D、1~2L/分持续鼻导管吸氧E、低流量间歇鼻导管吸氧Ⅱ型呼吸衰竭病人
你考虑可能是多饮水的用途是
在丙公司已研制出样品,丁公司已开始生产的情况下,甲公司的发明为何仍因具有新颖性而被授予专利权?()。2008年7月甲公司应当向哪个法院起诉?()。
按照《建设工程质量管理条例》,装修工程的保修期限为()。
结构变动综合指数的计算公式是()。
彤彤在幼儿园经常与小朋友打架。儿童社会工作者与彤彤进行了两次会谈,并通过家长和老师了解了他的家庭背景和学校表现,但仍未完全搞清楚彤彤的问题。此时社会工作者不适宜运用()的方法收集更多的资料。
Myparentsalways______greatimportancetomygettingagoodeducation.
经济全球化是指在生产不断发展、科技加速进步、社会分工和国际分工不断深化、生产的社会化和国际化程度不断提高的情况下,世界各国、各地区的经济活动越来越超出一国和地区的范围而相互联系、相互依赖的一体化过程。从根源上说它是生产力和国际分工的高度发展,要求进一步跨越
最新回复
(
0
)