首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
η*是非齐次线性方程组Aχ=b的一个解,ξ1,…,ξn-r是对应的齐次线性方程组的一个基础解系.证明: (1)η*,ξ1…,ξn-r线性无关; (2)η*,η*+ξ1,…,η*+ξn-r线性无关.
η*是非齐次线性方程组Aχ=b的一个解,ξ1,…,ξn-r是对应的齐次线性方程组的一个基础解系.证明: (1)η*,ξ1…,ξn-r线性无关; (2)η*,η*+ξ1,…,η*+ξn-r线性无关.
admin
2016-05-09
39
问题
η
*
是非齐次线性方程组Aχ=b的一个解,ξ
1
,…,ξ
n-r
是对应的齐次线性方程组的一个基础解系.证明:
(1)η
*
,ξ
1
…,ξ
n-r
线性无关;
(2)η
*
,η
*
+ξ
1
,…,η
*
+ξ
n-r
线性无关.
选项
答案
(1)假设η
*
,ξ
1
,…,ξ
n-r
线性相关,则存在不全为零的数c
0
,c
1
,…,c
n-r
使得下式成立 c
0
η
*
+c
1
ξ
1
+…+c
n-r
ξ
n-r
=0, (1) 用矩阵A左乘上式两边,得 0=A(c
0
η
*
+c
1
ξ
1
+…+c
n-r
ξ
n-r
)=c
0
Aη
*
+c
1
Aξ
1
+…+c
n-r
Aξ
n-r
=c
0
b, 其中b≠0,则由上式c
0
=0,于是(1)式变为 c
1
ξ
1
+…+c
n-r
ξ
n-r
=0, ξ
1
,…,ξ
n-r
是对应的齐次线性方程组的一个基础解系,故ξ
1
,…,ξ
n-r
线性无关,因此c
1
=c
2
=…=c
n-r
=0,与线性相关矛盾. 因此由定义知,η
*
,ξ
1
,…,ξ
n-r
线性无关. (2)假设η
*
,η
*
+ξ
1
,η
*
+ξ
n-r
线性相关,则存在不全为零的数c
0
,c
1
,…,c
n-r
使得下式成立 c
0
η
*
+c
1
(η
*
+ξ
1
)+…+c
n-r
(η
*
+ξ
n-r
)=0, 即(c
0
+c
1
+…+c
n-r
)η
*
+c
1
ξ
1
+…+c
n-r
ξ
n-r
=0. (2) 用矩阵A左乘上式两边,得 0=A[(c
0
+c
1
+…+c
n-r
)η
*
+c
1
ξ
1
+…+c
n-r
ξ
n-r
] =(c
0
+c
1
…+c
n-r
)Aη
*
+c
1
Aξ
1
+…+c
n-r
Aξ
n-r
=(c
0
+c
1
…+c
n-r
)b, 因为b≠0,故c
0
+c
1
+…+c
n-r
=0,代入(2)式,有 c
1
ξ
1
+…+c
n-r
ξ
n-r
=0, ξ
1
,ξ
n-r
是对应的齐次线性方程组的一个基础解系,故ξ
1
,ξ
n-r
线性无关,因此c
1
=c
2
=…= c
n-r
=0,即得c
0
=0.与假设矛盾. 综上,所给向量组η
*
,η
*
+ξ
1
,…,η
*
+ξ
n-r
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/cgw4777K
0
考研数学一
相关试题推荐
[*]
已知|A|==9,则代数余子式A21+A22=
A、 B、 C、 D、 C
以下矩阵可相似对角化的个数为()
设a,Aa,A2a线性无关,且3Aa-2A2a-A3a=0,其中A为3阶矩阵,a为3维列向量求A的特征值与特征向量;
已知二次型f(x1,x2,x3)=2x12+2x22+ax32+2x1x2经可逆线性变换x=Py化为g(y1,y2,y3)=y12+y22+2y2y3,则()
设矩阵A=与对角矩阵A相似求方程组(-2E-A*)x=0的通解
设α,β是3维单位正交列向量,则二次型f(x1,x2,x3)=xT(2ααT+ββT)x的规范形为()
已知对于n阶方阵A,存在自然数k,使得Ak=0,试证明矩阵E-A可逆,并求出逆矩阵的表达式(层为n阶单位矩阵).
随机试题
IPv6中IP地址的长度为()
Weofferanexcellenteducationtoourstudents.______,weexpectstudentstoworkhard.
可能导致透明膜形成的疾病有:
关于假释,下列哪一选项是错误的?(卷二真题试卷第12题)
各个不同类别的数量的比值称为( )。
下列各项中,属于不变资金的是()。
头脑风暴本是获得创意与构想的一个好工具,但很多管理者发现召开头脑风暴会议往往收获甚微。作者认为,这样的结果正是管理者自己造成的,因为他们在头脑风暴会议上经常采用两种手段:要么是鼓励与会人员跳出框架,漫无边际地思考;要么是让大家用新手法在老框架内进行剖析。本
自行车轮又在中国转起来了。如今,在中国的年轻人中间。正在流行着骑自行车的生活时尚。这种时尚打动了国外很多国际知名的自行车制造商。他们十分看好中国市场。纷纷来中国开店销售他们的自行车。以下哪项如果为真,最能质疑这些国外知名自行车制造商的看法?
MPsaretoinvestigatetheenvironmentalimpactofthrowaway"fastfashion"intheUKamidgrowingconcernsthatthemulti-billi
Thegovernmentshould______exerciseitsfunctionsinpolicy-making,implementationandoversighttowinpeople’strustandsu
最新回复
(
0
)