首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
η*是非齐次线性方程组Aχ=b的一个解,ξ1,…,ξn-r是对应的齐次线性方程组的一个基础解系.证明: (1)η*,ξ1…,ξn-r线性无关; (2)η*,η*+ξ1,…,η*+ξn-r线性无关.
η*是非齐次线性方程组Aχ=b的一个解,ξ1,…,ξn-r是对应的齐次线性方程组的一个基础解系.证明: (1)η*,ξ1…,ξn-r线性无关; (2)η*,η*+ξ1,…,η*+ξn-r线性无关.
admin
2016-05-09
41
问题
η
*
是非齐次线性方程组Aχ=b的一个解,ξ
1
,…,ξ
n-r
是对应的齐次线性方程组的一个基础解系.证明:
(1)η
*
,ξ
1
…,ξ
n-r
线性无关;
(2)η
*
,η
*
+ξ
1
,…,η
*
+ξ
n-r
线性无关.
选项
答案
(1)假设η
*
,ξ
1
,…,ξ
n-r
线性相关,则存在不全为零的数c
0
,c
1
,…,c
n-r
使得下式成立 c
0
η
*
+c
1
ξ
1
+…+c
n-r
ξ
n-r
=0, (1) 用矩阵A左乘上式两边,得 0=A(c
0
η
*
+c
1
ξ
1
+…+c
n-r
ξ
n-r
)=c
0
Aη
*
+c
1
Aξ
1
+…+c
n-r
Aξ
n-r
=c
0
b, 其中b≠0,则由上式c
0
=0,于是(1)式变为 c
1
ξ
1
+…+c
n-r
ξ
n-r
=0, ξ
1
,…,ξ
n-r
是对应的齐次线性方程组的一个基础解系,故ξ
1
,…,ξ
n-r
线性无关,因此c
1
=c
2
=…=c
n-r
=0,与线性相关矛盾. 因此由定义知,η
*
,ξ
1
,…,ξ
n-r
线性无关. (2)假设η
*
,η
*
+ξ
1
,η
*
+ξ
n-r
线性相关,则存在不全为零的数c
0
,c
1
,…,c
n-r
使得下式成立 c
0
η
*
+c
1
(η
*
+ξ
1
)+…+c
n-r
(η
*
+ξ
n-r
)=0, 即(c
0
+c
1
+…+c
n-r
)η
*
+c
1
ξ
1
+…+c
n-r
ξ
n-r
=0. (2) 用矩阵A左乘上式两边,得 0=A[(c
0
+c
1
+…+c
n-r
)η
*
+c
1
ξ
1
+…+c
n-r
ξ
n-r
] =(c
0
+c
1
…+c
n-r
)Aη
*
+c
1
Aξ
1
+…+c
n-r
Aξ
n-r
=(c
0
+c
1
…+c
n-r
)b, 因为b≠0,故c
0
+c
1
+…+c
n-r
=0,代入(2)式,有 c
1
ξ
1
+…+c
n-r
ξ
n-r
=0, ξ
1
,ξ
n-r
是对应的齐次线性方程组的一个基础解系,故ξ
1
,ξ
n-r
线性无关,因此c
1
=c
2
=…= c
n-r
=0,即得c
0
=0.与假设矛盾. 综上,所给向量组η
*
,η
*
+ξ
1
,…,η
*
+ξ
n-r
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/cgw4777K
0
考研数学一
相关试题推荐
A、 B、 C、 D、 C
设A=,为A中aij(i,j=1,2,3)的代数余子式,二次型的矩阵为B求正交变换x=Qy将二次型f(x1,x2,x3)化为标准形
设f(x)在[0,1]上连续,在(0,1)内二阶可导,且f(0)=f(1)=∫01f(x)dx证明:方程f(x)=∫01f(x)dx在(0,1)内至少有一个实根;
设A=可逆,a=(1,b,1)T(b>0)满足A*a=λa,A*是A的伴随矩阵求正较变换x=Qy化二次型f(x1,x2,x3)=xTAx为标准形
设f(x)在[0,﹢∞)上连续,且f(x)=dt在(Ⅱ)的基础上,任取x0>ξ>0,xn=2f(xn-1)(n≥1),证明:一ξ
设线性无关的函数y1,y2,y3都是非齐次线性微分方程y’’+p(x)y’+q(x)y=f(x)的解,C1,C2为任意常数,则该方程的通解为()
设都是线性方程组AX=0的解向量,只要系数矩阵A为().
向量组a1,a2…,as线性无关的充要条件是().
已知0是A=的特征值,求a和A的其他特征值及线性无关的特征向量.
设χOy平面上有正方形D={(χ,y)|0≤χ≤1,0≤y≤1)及直线l:χ+y=t(t≥0).若S(t)表示正方形D位于直线l左下方部分的面积,试求∫0χS(t)dt(χ≥0).
随机试题
撤销党内职务处分,是指撤销受处分党员由党内选举或者组织任命的党内各种职务。()
在氯碱生产三效四体二段蒸发工序中,一效二次蒸汽送往二效加热室,二效二次蒸汽送往三效加热室,三效二次蒸汽送往四效加热室。()
HaveyoueverwatchedahomeshoppingprogramonTV?Canyoudescribe【C1】______it’sliketoshopathomebytelevision?Haveyo
根据降血糖作用机制,阿卡波糖属于
小儿肺的呼吸功能,下列哪项不正确
下列各项中,会引起应收账款账面价值发生增减变动的有()。
【2015年安徽.判断】教材是教学活动可以利用的唯一资源。()
下列名言与作者的对应关系不正确的一项是()。
Alotofpeoplebelievethattelevisionhasaharmfuleffectonchildren.Afewyearsago,thesamecriticismsweremadeofthe
Politicalinstitutionsdevelopwhenthecomplexityofthesocietyreachesthepointatwhichkinshiporganizationcannolonger
最新回复
(
0
)