首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
η*是非齐次线性方程组Aχ=b的一个解,ξ1,…,ξn-r是对应的齐次线性方程组的一个基础解系.证明: (1)η*,ξ1…,ξn-r线性无关; (2)η*,η*+ξ1,…,η*+ξn-r线性无关.
η*是非齐次线性方程组Aχ=b的一个解,ξ1,…,ξn-r是对应的齐次线性方程组的一个基础解系.证明: (1)η*,ξ1…,ξn-r线性无关; (2)η*,η*+ξ1,…,η*+ξn-r线性无关.
admin
2016-05-09
56
问题
η
*
是非齐次线性方程组Aχ=b的一个解,ξ
1
,…,ξ
n-r
是对应的齐次线性方程组的一个基础解系.证明:
(1)η
*
,ξ
1
…,ξ
n-r
线性无关;
(2)η
*
,η
*
+ξ
1
,…,η
*
+ξ
n-r
线性无关.
选项
答案
(1)假设η
*
,ξ
1
,…,ξ
n-r
线性相关,则存在不全为零的数c
0
,c
1
,…,c
n-r
使得下式成立 c
0
η
*
+c
1
ξ
1
+…+c
n-r
ξ
n-r
=0, (1) 用矩阵A左乘上式两边,得 0=A(c
0
η
*
+c
1
ξ
1
+…+c
n-r
ξ
n-r
)=c
0
Aη
*
+c
1
Aξ
1
+…+c
n-r
Aξ
n-r
=c
0
b, 其中b≠0,则由上式c
0
=0,于是(1)式变为 c
1
ξ
1
+…+c
n-r
ξ
n-r
=0, ξ
1
,…,ξ
n-r
是对应的齐次线性方程组的一个基础解系,故ξ
1
,…,ξ
n-r
线性无关,因此c
1
=c
2
=…=c
n-r
=0,与线性相关矛盾. 因此由定义知,η
*
,ξ
1
,…,ξ
n-r
线性无关. (2)假设η
*
,η
*
+ξ
1
,η
*
+ξ
n-r
线性相关,则存在不全为零的数c
0
,c
1
,…,c
n-r
使得下式成立 c
0
η
*
+c
1
(η
*
+ξ
1
)+…+c
n-r
(η
*
+ξ
n-r
)=0, 即(c
0
+c
1
+…+c
n-r
)η
*
+c
1
ξ
1
+…+c
n-r
ξ
n-r
=0. (2) 用矩阵A左乘上式两边,得 0=A[(c
0
+c
1
+…+c
n-r
)η
*
+c
1
ξ
1
+…+c
n-r
ξ
n-r
] =(c
0
+c
1
…+c
n-r
)Aη
*
+c
1
Aξ
1
+…+c
n-r
Aξ
n-r
=(c
0
+c
1
…+c
n-r
)b, 因为b≠0,故c
0
+c
1
+…+c
n-r
=0,代入(2)式,有 c
1
ξ
1
+…+c
n-r
ξ
n-r
=0, ξ
1
,ξ
n-r
是对应的齐次线性方程组的一个基础解系,故ξ
1
,ξ
n-r
线性无关,因此c
1
=c
2
=…= c
n-r
=0,即得c
0
=0.与假设矛盾. 综上,所给向量组η
*
,η
*
+ξ
1
,…,η
*
+ξ
n-r
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/cgw4777K
0
考研数学一
相关试题推荐
A、 B、 C、 D、 B
[*]
设,f具有连续二阶偏导数,则
n维向量组(Ⅰ):α1,α2,…,αs和(Ⅱ):β1,β2,…,βt等价的充分必要条件是
设二次型f(x1,x2)=ax12+bx22+4x1x2经过正交变换x=Qy化为g(y1,y2)=2y12+2y1y2二次型f与g的矩阵分别为A与B求正交矩阵Q
设向量=(1,1,﹣1)T是A=的一个特征向量证明:A的任一特征向量都能由a线性表示
设向量=(1,1,﹣1)T是A=的一个特征向量判断A是否相似于对角矩阵,说明理由
已知平面π:x-2y+z-3=0,直线L:,则π与L的夹角是________.
设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B.求AB-1.
设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B.证明B可逆;
随机试题
腰椎间盘突出症最常受累的神经根是
下列哪些二审案件依法应当开庭审理?()
当翼缘连接处的弯矩为946kN·m时,翼缘连接一侧螺栓所承受的轴力为( )。腹板连接处承受的弯矩为254kN·m、I-I截面上的剪力V=200kN时,腹板连接一侧螺栓所承受的弯矩为( )。
承租人按照约定的方式或者租赁物的性质,使用租赁物,致使租赁物受到损耗的,不承担赔偿责任。()
中唐倡导新乐府运动的诗人是()。
阅读下面材料,根据要求写作。勤奋工作是树立教师威信的第一要素。天道酬勤,有耕耘就会有收获,我们要不懈努力,最大限度地完善、充实自已,提高自己的教育教学能力,勤于工作,乐于奉献,以适应新时代的要求。请根据上述材料给你的启示,联系实际,写一篇议论文。要求
法国大革命期间,资产阶级提出了很多教育改革的基本主张,以下不属于这一内容的是()
TheAleuts(阿留申人)werenamedsobyRussians,buttheycallthemselvesUnanganwhichmeans"thepeople."Theyarenativeinhabit
MusictoYourGearsMusicmaysoothethesavagebreast,butitcanalsodamageyourhealthwhenyouareatthewheel.(A)Recentr
Nolivingthingcouldsurviveataventexcepttubeworms.Themajorityoflivingthingsthatgatheraroundventsliveattempe
最新回复
(
0
)