首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续,在(0,1)内可导,且∫01f(t)dt=0证明:存在ξ∈(0,1),使得f(ξ)=∫0ξf(t)dt.
设f(x)在[0,1]上连续,在(0,1)内可导,且∫01f(t)dt=0证明:存在ξ∈(0,1),使得f(ξ)=∫0ξf(t)dt.
admin
2019-09-04
32
问题
设f(x)在[0,1]上连续,在(0,1)内可导,且∫
0
1
f(t)dt=0证明:存在ξ∈(0,1),使得f(ξ)=∫
0
ξ
f(t)dt.
选项
答案
令φ(x)=e
-x
∫
0
x
f(t)dt, 因为φ(0)=φ(1)=0,所以存在ξ∈(0,1),使得φ’(ξ)=0, 而φ’(x)=e
-x
[f(x)-∫
0
x
f(t)dt]且e
-x
≠0,故f(ξ)=∫
0
ξ
f(t)dt.
解析
转载请注明原文地址:https://kaotiyun.com/show/ciJ4777K
0
考研数学三
相关试题推荐
(1999年)计算二重积分其中D是由直线x=一2,y=0,y=2以及曲线所围成的平面区域.
设f(x)在(一∞,+∞)上二阶导数连续,f(0)=01)确定a使g(x)在(一∞,+∞)上连续;2)证明对以上确定的a,g(x)在(一∞,+∞)上有连续一阶导数.
求曲线的一条切线l,使该曲线与切线z及直线x=0,x=2所围成图形面积最小.
已知对于n阶方阵A,存在自然数k,使得Ak=O,试证明矩阵E-A可逆,并写出其逆矩阵的表达式(E为n阶单位阵).
设3阶矩阵A=(α1,α2,α3)有3个不同的特征值,且α3=α1+2α2.证明r(A)=2;
已知二次型f(x1,x2,x3)=xTAx在正交变换x=Qy下的标准形为y12+y22,且Q的第3列为证明A+E为正定矩阵,其中E为3阶单位矩阵.
设n个n维列向量α1,α2,…,αn线性无关,P为n阶方阵,证明:向量组Pα1,Pα2,…,Pαn线性无关|P|≠0.
如图1.3—1所示,设曲线方程为梯形OABC的面积为D,曲边梯形OABC的面积为D1,点A的坐标为(a,0),a>0.证明:
随机试题
在相位调制系统中可用于解决载波相位模糊的码是()
《中华人民共和国行政监察法》颁布于
下列哪个结构不经过胸锁乳突肌表面()
女孩8个月,因发热、咳嗽8天,近3天加重,纳差。附近有百日咳患者,患儿未接受过预防接种。体检:体温37.5℃,神志清,两眼睑水肿,咽红。诊断为百日咳。下列哪种是百日咳杆菌的致病因子
与血管炎病相关的抗体Wegener肉芽肿65%.~70%.呈现
世界上最大的外汇交易中心是()。
设f(x),g(x)在[a,b]上连续,在(a,b)内可导,且g’(x)≠0.证明:存在ξ∈(a,b),使得
Maybeunemploymentisn’tsobadafterall.Anewstudysaysthathavingademanding,unstableandthanklessjobmaymakeyoueve
Whathasn’tDevorahDayinvolvedin?
What’sthemainideaofthepassage?
最新回复
(
0
)