首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
给定向量组(Ⅰ)α1=(1,0,2)T,α2=(1,1,3)T,α3=(1,-1,a+2)T和(Ⅱ)β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T.当a为何值时(Ⅰ)和(Ⅱ)等价?a为何值时(Ⅰ)和(Ⅱ)不等价?
给定向量组(Ⅰ)α1=(1,0,2)T,α2=(1,1,3)T,α3=(1,-1,a+2)T和(Ⅱ)β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T.当a为何值时(Ⅰ)和(Ⅱ)等价?a为何值时(Ⅰ)和(Ⅱ)不等价?
admin
2018-06-27
26
问题
给定向量组(Ⅰ)α
1
=(1,0,2)
T
,α
2
=(1,1,3)
T
,α
3
=(1,-1,a+2)
T
和(Ⅱ)β
1
=(1,2,a+3)
T
,β
2
=(2,1,a+6)
T
,β
3
=(2,1,a+4)
T
.当a为何值时(Ⅰ)和(Ⅱ)等价?a为何值时(Ⅰ)和(Ⅱ)不等价?
选项
答案
思路(Ⅰ)和(Ⅱ)等价用秩来刻画,即 r(α
1
,α
2
,α
3
,β
1
,β
2
,β
3
)=r(α
1
,α
2
,α
3
)=r(β
1
,β
2
,β
3
). (α
1
,α
2
,α
3
|β
1
,β
2
,β
3
) [*] 当a+1=0时,r(α
1
,α
2
,α
3
)=2,而r(α
1
,α
2
,α
3
, β
1
,β
2
,β
3
)=3,因此(Ⅰ)与(Ⅱ)不等价. 当a+1≠0时,r(α
1
,α
2
,α
3
,β
1
,β
2
,β
3
)=r(α
1
,α
2
,α
3
)=3. 再来计算r(β
1
,β
2
,β
3
). (β
1
,β
2
,β
3
) [*] 则r(β
1
,β
2
,β
3
)=3(与a无关).于是a+1≠0时(Ⅰ)与(Ⅱ)等价.
解析
转载请注明原文地址:https://kaotiyun.com/show/cik4777K
0
考研数学二
相关试题推荐
求微分方程y"-2y’=e2x满足条件y(0)=1,y’(0)=1的解.
设f(x)在区间[0,1]上可微,且满足条件.试证存在ξ∈(0,1),使f(ξ)+ξf’(ξ)0.
已知曲线在直角坐标系中由参数方程给出:求y(x)的单调区间与极值点;
已知A是3阶矩阵,α1,α2,α3是线性无关的3维列向量,满足Aα1=一α1一3α2—3α3,Aα2=4α1+4α2+α3,Aα3=一2α1+3α3.求矩阵A的特征向量;
设n阶实对称矩阵A满足A2=E,且秩r(A+E)=k
已知A是3阶矩阵,α1,α2,α3是3维线性无关列向量,且Aα1=3α1+3α2—2α3,Aα2=一α2,Aα3=8α1+6α2—5α2.求秩r(A+E).
已知y1*(x)=xe-x+e-2x,y2*(x)=xe-x+xe-2x,y3*(x)=xe-x+e-2x+xe-2x是某二阶线性常系数微分方程y’’+Py’+qy=f(x)的三个特解.求这个方程和它的通解:
设f(x)为连续函数,则()
设,求f(x)的间断点并判断其类型.
边长为a和b的矩形薄板与液面成α角斜沉于液体内,长边平行于液面位于深h处,设a>b,液体的比重为7,求薄板受的液体压力.
随机试题
某重点中学最近一项调查表明,该校高中生对踢足球有着特殊偏好,而且远远超过了其他球类,调查同时发现经常踢足球的学生学习成绩比不经常踢足球的学生好。由此可见,经常踢足球能够提高学生的学习成绩。以下哪项最能削弱上述结论?
可引起禽类肿瘤性疾病的双股DNA病毒是
【背景资料】某吹填工程,吹填区面积2.5km2、吹填工程量2000万m3,采用装有钢桩与三缆定位设备的大型绞吸挖泥船直接吹填的施工方式。取土区土质自上而下分别为淤泥、淤泥质黏土、软塑黏土,吹填完成并经浅层处理后,采用真空预压法对吹填区进行加固。施
下列有关计算机账务处理系统特点的叙述中,错误的有()。
下列关于银行存款余额调节表编制方法的说法中,正确的有()。
马斯洛的需要层次论认为人的基本需要不包括()。
依次填入句中横线上的词语,最恰当的一组是()。①他们学习了《中国教育改革和发展纲要》,决心统筹安排,因地制宜,______推进农村教育综合改革。②为了躲避敌人的搜捕,她______成一个阔太太,打扮得珠光宝气。
中国:上海()
Inrecentyearsanewfarmingrevolutionhasbegun,onethatinvolvesthe【C1】______oflifeatafundamentallevel—thegene.Th
1000BASE-T标准使用5类非屏蔽双绞线,双绞线长度最长可以达到()。
最新回复
(
0
)