首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2, 记 若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y12+y22。
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2, 记 若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y12+y22。
admin
2019-01-23
40
问题
设二次型f(x
1
,x
2
,x
3
)=2(a
1
x
1
+a
2
x
2
+a
3
x
3
)
2
+(b
1
x
1
+b
2
x
2
+b
3
x
3
)
2
,
记
若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y
1
2
+y
2
2
。
选项
答案
设A=2αα
T
+ββ
T
,由于|α|=1,α=ββ
T
α=0,则 Aα=(2αα
T
+ββ
T
)α=2α|α|
2
+ββ
T
α=2α, 所以α为矩阵对应特征值λ
1
=2的特征向量; Aβ=(2αα
T
+ββ
T
)β=2α|α|
2
+β|β|
2
=β, 所以β为矩阵对应特征值λ
2
=1的特征向量。 而矩阵A的秩 r(A)=r(2αα
T
+ββ
T
)≤r(2αα
T
)+r(ββ
T
)=2, 所以λ
3
=0也是矩阵的一个特征值。故f在正交变换下的标准形为2
1
2
+y
2
2
。
解析
转载请注明原文地址:https://kaotiyun.com/show/cmP4777K
0
考研数学三
相关试题推荐
讨论函数f(x)=在(一∞,+∞)上的有界性.
求解下列微分方程:(1)ylnydx+(x一lny)dy=0.(2)y’=.
设函数f(x)在区间[a,b]上连续,且f(x)>0,证明:∫abf(x)dx.∫ab≥(b—a)2.
设随机变量X与Y分别表示将一枚骰子接连抛两次后出现的点数.试求齐次方程组:的解空间的维数(即基础解系所含向量的个数)的数学期望和方差.
设随机变量X的分布函数为F(x)=.
设f(x)在[a,b]上连续,在(a,b)内可导,b>a>0,f(a)≠f(b),试证:存在点ξ,η∈(a,b),使得2ηf’(ξ)=(a+b)f’(η).
设不恒为常数的函数f(x)在[a,b]上连续,在(a,b)内二阶可导,且f(a)=f(c)=f(b).其中c为(a,b)内的一点,试证:存在点ξ∈(a,b),使得f"(ξ)
设f(x)在区间[0,+∞)内二阶可导,且在x=1处与曲线y=x3一3相切,f(x)在(0,+∞)内与曲线y=x3一3有相同的凹向,求方程f(x)=0在(1,+∞)内实根的个数.
设A,B为n阶矩阵,且A与B相似,E为n阶单位矩阵,则().
曲线y=lnx上与直线x+y=1垂直的切线方程为________。
随机试题
红细胞沉降率加速主要是由于
症见腹痛绵绵,时作时止,喜热恶冷,痛时喜按,饥饿劳累后更甚,得食或休息后稍减,大便溏薄,兼神疲气短,怯寒,舌淡苔白,脉沉细。其辨证是
执行给药原则中,哪项是最重要的
A.失笑散B.四物汤C.保阴煎D.固冲汤E.举元煎
根据以下资料,回答下列题。2040年,中国0—14岁的人口数大约为()亿。
IP即著作权或知识产权,近年来从影视化到改编游戏,再到周边产品开发,IP越来越受到影视行业和资本市场的追捧。特别是诸多基于热门小说等改编的影视项目的成功,让IP市场愈发火爆。一些“超级IP”项目被炒至千万级别,个别作家的作品甚至还未写完就已经被预订。影视公
(91年)如图2.1昕示,A和D分别是曲线y=ex和y=e-2x上的点,AB和DC均垂直于x轴,且|AB|:|DC|=2:1,|AB|<1.求点B和C的横坐标,使梯形ABCD的面积最大.
紀子さんを知っていますか。
Itisexcitingtoapplyforajobthatreallyappealstoyou.Inmakingyourapplication,thereareanumberofpointsforyou
A—Cost,InsuranceandFreightB—ChamberofCommerceC—BalanceSheetD—ForeignExchangeE—Letterof
最新回复
(
0
)