首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2, 记 若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y12+y22。
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2, 记 若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y12+y22。
admin
2019-01-23
61
问题
设二次型f(x
1
,x
2
,x
3
)=2(a
1
x
1
+a
2
x
2
+a
3
x
3
)
2
+(b
1
x
1
+b
2
x
2
+b
3
x
3
)
2
,
记
若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y
1
2
+y
2
2
。
选项
答案
设A=2αα
T
+ββ
T
,由于|α|=1,α=ββ
T
α=0,则 Aα=(2αα
T
+ββ
T
)α=2α|α|
2
+ββ
T
α=2α, 所以α为矩阵对应特征值λ
1
=2的特征向量; Aβ=(2αα
T
+ββ
T
)β=2α|α|
2
+β|β|
2
=β, 所以β为矩阵对应特征值λ
2
=1的特征向量。 而矩阵A的秩 r(A)=r(2αα
T
+ββ
T
)≤r(2αα
T
)+r(ββ
T
)=2, 所以λ
3
=0也是矩阵的一个特征值。故f在正交变换下的标准形为2
1
2
+y
2
2
。
解析
转载请注明原文地址:https://kaotiyun.com/show/cmP4777K
0
考研数学三
相关试题推荐
设f(x)在x=0的某邻域内二阶可导,且β(β≠0),求α、β(其中β≠0).
设f(x)=且g(x)=f(x2)+f(x—1),则g(x)的定义域为_________.
已知级数.
已知A=[α1,α2,α3,α4],其中α1,α2,α3,α4为四维列向量,方程组Ax=0的通解为k(2,一1,2,5)T,则α4可由α1,α2,α3,表示为__________.
设两个线性方程组(I),(Ⅱ)为证明:方程组(I)有解的充分必要条件是方程组(Ⅱ)无解.
设A是n阶方阵,证明:AnX=0和An+1X=0是同解方程组.
求二重积分I=xydxdy,其中积分区域D={(x,y)|x2+y2≥1,x2+y2—2x≤0,y≥0}.
设f(t)为连续函数,常数a>0,区域D={(x,y)||x|≤},证明:f(x—y)dxdy=∫—aaf(t)(a一|t|)dt.
设某商品的最大需求量为1200件,该商品的需求函数Q=Q(p),需求弹性η=(η>0),p为单价(万元).(1)求需求函数的表达式;(2)求p=100厅元时的边际收益,并说明其经济意义.
设实对称矩阵(1)求可逆矩阵P,使P—1AP为对角矩阵.(2)若A可逆,计算行列式|A*+2E|的值.
随机试题
Idon’tthinkit’snecessaryforustodiscussthisquestionanyfurther.()
计算机网络中为了防止黑客攻击服务器所采用的关键技术是_______技术。
胆囊无痛性肿大伴黄疸,见于()
为一位急性肺栓塞的患者进行身体评估,可获得的体征有
肘横纹(平肘尖)至腕掌(背)侧横纹的骨度分寸是
香港特别行政区的下列哪一项职务可由特区非永久性居民担任?(2008年试卷一第16题)
工业安装工程的特征是有()。
颜色为黄色的地面标志包括()。
关于转让旧房及建筑物土地增值税扣除项目的税务处理,下列说法正确的是()。
教育现代化的核心是()。
最新回复
(
0
)