首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(01年)设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)n×n中元素aij的代数余子式(i,j=1,2,…,n),二次型f(χ1,χ2,…,χn)=. (1)记X=(χ1,χ2,…,χn)T,把f(χ1,χ2,…χn)写成矩阵形式,并证
(01年)设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)n×n中元素aij的代数余子式(i,j=1,2,…,n),二次型f(χ1,χ2,…,χn)=. (1)记X=(χ1,χ2,…,χn)T,把f(χ1,χ2,…χn)写成矩阵形式,并证
admin
2017-05-26
57
问题
(01年)设A为n阶实对称矩阵,秩(A)=n,A
ij
是A=(a
ij
)
n×n
中元素a
ij
的代数余子式(i,j=1,2,…,n),二次型f(χ
1
,χ
2
,…,χ
n
)=
.
(1)记X=(χ
1
,χ
2
,…,χ
n
)
T
,把f(χ
1
,χ
2
,…χ
n
)写成矩阵形式,并证明二次型f(X)的矩阵为A
-1
.
(2)二次型g(X)=X
T
AX与f(X)的规范形是否相同?说明理由.
选项
答案
(1)因为A为对称矩阵,所以A
ij
=A
ji
(i,j=1,2,…,n).因此f(X)的矩阵形式为 [*] 因秩(A)=n,故A可逆,且 [*] 从而 (A
-1
)
T
=(A
T
)
-1
=A
-1
故A
-1
也是实对称矩阵.因此,二次型f(X)的矩阵为 [*] (2) 因为 (A
-1
)
T
AA
-1
=(A
T
)
-1
E=A
-1
所以A与A
-1
合同,于是g(X)=X
T
AX与f(X)有相同的规范形.
解析
转载请注明原文地址:https://kaotiyun.com/show/ctH4777K
0
考研数学三
相关试题推荐
如果P(AB)=0,则下列结论中成立的是().
微分方程y"+y=cosx的一个特解的形式为y"=().
设α为常数,则级数().
设3阶对称矩阵A的特征向量值λ1=1,λ2=2,λ3=-2,又a1=(1,-1,1)T是A的属于λ1的一个特征向量.记B=A5-4A3+E,其中E为3阶单位矩阵.(Ⅰ)验证a1是矩阵B的特征向量,并求B的全部特征值与特征向量;(Ⅱ)求矩阵B.
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)n×m中元素aij(i,j=1,2,…,n)的代数余子式,二次型f(x1,x2,…,xn)=(Ⅰ)记X=(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型f(x)的
设A是n阶矩阵,下列不是命题“0是矩阵A的特征值”的充分必要条件的是().
设f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1,试证:(Ⅰ)存在η∈(1/2,1),使f(η)=η;(Ⅱ)对任意实数λ,必存在ξ∈(0,η),使得f’(ξ)-λ[f(ξ)-ξ]=1.
求一个正交变换,化二次型f=x12+4x22+4x32-4x1x2-8x2x3,为标准形.
设二次型xTAx=x12+4x22+x32+2ax1x2+2bx1x3+2cx2x3,矩阵A满足AB=0,其中用正交变换化二次型xTAx标准形,并写出所用正交变换;
随机试题
高血压患者,突然胸闷,气短,咳嗽,不能平卧,血压200/110mmHg,心率120/min,心尖区舒张期奔马律,两肺底中量湿啰音,下列哪组治疗最适宜
某男性,脾气暴躁,工作认真而且很忙,争强好胜,雄心勃勃,因小事上火,发脾气后,心绞痛入院,诊断为冠心病。病前病人的人格类型是()
下列除哪项外,均是火(热)邪气的致病特点()
64岁,女性。近2年偶有心悸感,无黑矇及晕厥发作,多次查心电均为房颤,心率65~89次/分。关于心律失常需进行如何治疗()
化工企业所用化工容器极易发生爆炸,因此对密闭的化工容器需要采取防爆安全措施。爆炸控制的措施分为若干种,用于防止容器或室内爆炸的安全措施有()。
下列属于基金投资交易过程中的风险的是()。Ⅰ.合规风险Ⅱ.汇率风险Ⅲ.操作风险Ⅳ.市场风险
当事人约定检验期间的,买受人应当在检验期间内将标的物的数量或者质量不符合约定的情形通知出卖人;买受人怠于通知的,视为标的物的数量或者质量符合约定。()
1945年8月23日,毛泽东在《抗日战争胜利后的新形势和新任务》中指出:“现在我国在全国范围内可能成立资产阶级领导的而有无产阶级参加的政府。中国如果成立联合政府,可能有几种形式。其中一种就是现在的独裁加若干民主,并将存在相当长的时期。对于这种形式的联合政府
设A是3阶矩阵,α,β是线性无关的三维列向量,满足|A|=0,Aα=β,Aβ=α,则A~A,其中A=__________.
Shop-lifterscanbedividedintothreemaincategories;theprofessionals,thedeliberateamateurs,andthepeoplewhojustcan
最新回复
(
0
)