首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶非奇异矩阵,a为n维列向量,b为常数.记分块矩阵 其中A*是矩阵A的伴随矩阵,E为n阶单位矩阵. 证明:矩阵Q可逆的充分必要条件是αTA-1α≠b.
设A为n阶非奇异矩阵,a为n维列向量,b为常数.记分块矩阵 其中A*是矩阵A的伴随矩阵,E为n阶单位矩阵. 证明:矩阵Q可逆的充分必要条件是αTA-1α≠b.
admin
2019-03-21
106
问题
设A为n阶非奇异矩阵,a为n维列向量,b为常数.记分块矩阵
其中A
*
是矩阵A的伴随矩阵,E为n阶单位矩阵.
证明:矩阵Q可逆的充分必要条件是α
T
A
-1
α≠b.
选项
答案
由上题得[*] 故Q可逆[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/d1V4777K
0
考研数学二
相关试题推荐
设函数f(x)=(α>0,β>0).若f’(x)在x=0处连续,则
设函数f(x)=(ex一1)(e2x一2)…(enx一n),其中n为正整数,则f’(0)=
设f(x)=在x=0处连续,则常数a与b应满足的关系是________.
已知非齐次线性方程组有3个线性无关的解.(1)证明方程组系数矩阵A的秩,r(A)=2:(2)求a,b的值及方程组的通解.
设A,B为满足AB=O的任意两个非零矩阵,则必有
(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)一f(a)=f’(ξ)(b一a).(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且f’(x)=A,则f+’(0
设函数f(x)在(一∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2—4),若对任意的x都满足f(x)=kf(x+2),其中k为常数.(Ⅰ)写出f(x)在[一2,0]上的表达式;(Ⅱ)问k为何值时,f(x)在x=0处可导.
随机试题
根据结构形式的特点和词义情况,疑问句可以分为是非问、_____、选择问和正反问四大类。
什么是人员配备?
先秦诸子中,倡导“民为贵,社稷次之,君为轻”思想的是()
法人享有的人身权包括
下列选项说法正确的是()。
沥青路面的施工中,沥青混凝土半幅施工不能采用热接缝时,应当采用措施有()。
设总体X的密度函数为其中θ>0为未知参数,(X1,X2,…,Xn)为来自总体X的简单随机样本,求参数θ的矩估计量和极大似然估计量.
Duringtheday,Leipzig’sairportisquiet.Itisatnightthattheairfieldcomestolife.Nexttotherunwayayellowwarehous
近五年来,中国的软件出口规模发展很快。1999年的出口额为2.5亿美元,2004年的出口额为26亿美元,比1999年增长了约10倍,估计年平均增长率为(66)。
ShouldMedicalSchoolsTurntoThree-yearPrograms?[A]ForTravisHill,itwasanoffertoogoodtorefuse.Lastyearwhen
最新回复
(
0
)