首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知非齐次线性方程组 有3个线性无关的解. (1)证明方程组系数矩阵A的秩,r(A)=2: (2)求a,b的值及方程组的通解.
已知非齐次线性方程组 有3个线性无关的解. (1)证明方程组系数矩阵A的秩,r(A)=2: (2)求a,b的值及方程组的通解.
admin
2017-04-24
132
问题
已知非齐次线性方程组
有3个线性无关的解.
(1)证明方程组系数矩阵A的秩,r(A)=2:
(2)求a,b的值及方程组的通解.
选项
答案
(1)设ξ
1
,ξ
2
,ξ
3
是该方程组的3个线性无关的解,则由解的性质知α
1
=ξ
1
一ξ
2
,α
2
=ξ
1
一ξ
3
是对应齐次线性方程组Ax=0的两个解,且由 [α
1
,α
2
]=[ξ
1
,ξ
2
,ξ
3
][*] 及ξ
1
,ξ
2
,ξ
3
线性无关,易知向量组α
1
,α
2
线性无关,故齐次线性方程组Ax=0的基础解系至少含2个向量,即4一r(A)≥2,得r(A)≤2,又显然有r(A)≥2(A中存在2阶非零子式[*]=一1,或由A的前2行线性无关),于是有r(A)=2. [*] 因r(A)=2,故有 4一2a=0,4a+b一5=0 由此解得a=2,b=一3.此时 [*] 由此可得方程组的用自由未知量表示的通解为 [*] 令x
3
=k
1
,x
4
=k
2
,则得用对应齐次线性方程组的基础解系表示的通解为 [*] 其中k
1
,k
2
为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/gyt4777K
0
考研数学二
相关试题推荐
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=∫01f(x)dx=0,证明:存在ξ∈(0,1),使得f’(ξ)+f(ξ)=0.
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1),证明:存在ξ,η∈(0,1),使得f’(ξ)+f’(η)=0.
设函数f(x)二阶可导,且f’(x)>0,f"(x)>0,△y=f(x+△x)-f(x),其中△x<0,则().
若连续函数f(x)满足关系式f(x)=∫02πdt+ln2,则f(x)=________。
设y=y(x)是区间[-π,π]内过的光滑曲线,当-π<x<0时,曲线上任一点处的法线都过原点,当0≤x≤π时,函数y(x)满足y"+y+x=0,求y(x)的表达式。
设y=ex(C1sinx+C2cosx)(C1,C2为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为________。
设y1,y2是二阶常系数线性齐次方程y"+p(x)y’+q(x)y=0的两个特解,则由y1(x)与y2(x)能构成该方程的通解,其充分条件是________。
设(X,Y)为连续型随机向量,已知X的密度函数fX(x)及对一切x,在X=x的条件下Y的条件密度fY|X(y|x).求:(1)密度函数f(x,y);(2)Y的密度函数fY(y);(3)条件密度函数fX|Y(x|y).
设二二次型f(x1,x2,x3):XTAX=ax12+2x22+(-232)+2bx1x3(b>0),其中二:次矩阵A的特征值之和为1,特征值之积为-12.(Ⅰ)求a,b的值;(Ⅱ)利用正交变换将二次型f化为标准形,并写出
随机试题
植物茎的初生结构,从表及里可分为表皮、皮层和()。
【背景资料】某高等级公路全长50.8km,路面结构为沥青混凝土,路面宽度25m,设计车速120km/h采用两台摊铺机梯队作业,全封闭施工。本工程于某年某月某日建成通车,通车不久,发现在K8+250~K9+580段有行车抖动,跳车等现象。建设单位、监理单位
在会计电算化信息系统的开发与应用中,()是电算化系统的应用阶段。
甲公司2015年12月31日相关科目的余额如下表所示:则甲公司2015年12月31日资产负债表中“应付账款”项目的金额为()万元。
从财务控制的观点来看,责任中心可以分为()。
根据皮亚杰的观点,人的思维发展过程包括()阶段。
马克思把商品转换成货币称为“商品的惊险的跳跃”,“这个跳跃如果不成熟,坏的不是商品,但一定是商品占有者”。这是因为只有商品变为货币,()。
下列的英文缩写和中文名字的对照中,正确的是()。
—Readthearticleaboutcorporationmerger.—Choosethebestsentencetofilleachoftheblanks.—Foreachblank8-12markone
总的说来,教育公平意味着人人享有平等的教育机会。
最新回复
(
0
)