首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b) 一f(a)=f’(ξ)(b一a). (Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且f’(x)=A,则f+’(0
(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b) 一f(a)=f’(ξ)(b一a). (Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且f’(x)=A,则f+’(0
admin
2017-04-24
42
问题
(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b) 一f(a)=f’(ξ)(b一a).
(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且
f’(x)=A,则f
+
’
(0)存在,且f
x
’
(0)=A.
选项
答案
(Ⅰ)取F(x)=f(x)一[*] 由题意知F(x)在[a,b]上连续,在(a,b)内可导,且 [*] 根据罗尔定理,存在ξ∈(a,b),使得F’(ξ)=[*]=0,即 f(b)一f(a)=f’(ξ)(b一a). (Ⅱ)对于任意的t∈(0,δ),函数f(x)在[0,t]上连续,在(0,t)内可导,由右导数定义及拉格朗日中值定理 [*] 故f
+
’
(0)存在,且f
+
’
(0)=A.
解析
转载请注明原文地址:https://kaotiyun.com/show/4yt4777K
0
考研数学二
相关试题推荐
设f(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b),且f(x)在[a,b]上不恒为常数.证明:存在ξ,η∈(a,b),使得f’(ξ)>0,f’(η)<0.
证明:当x>0时,ex-1>(1+x)ln(1+x).
设f(x)为二阶可导的奇函数,当x∈(0,+∞)时,f’(x)>0,f"(x)>0,则当x∈(-∞,0)时().
微分方程y"+2y’+5y=0的通解为________。
求关于给定的原始式所满足的微分方程。y=Ax2+Bx+C,其中A,B,C为任意常数。
设二阶常系数线性微分方程y"+ay’+βy=γex的一个特解为y=e2x+(1+x)ex,试确定常数α,β,γ,并求该方程的通解。
设f(u,v)具有连续偏导数,且满足f’u(u,v)+f’v(u,v)=uv,求y(x)=e-2xf(x,x)所满足的一阶微分方程,并求其通解。
拟建一个容积为V的长方体水池,设它的底为正方形,如果池底单位面积的造价是四周单位面积造价的2倍,试将总造价表示成底边长的函数,并确定此函数的定义域。
设矩阵A与B相似,且求可逆矩阵P,使P-1AP=B.
随机试题
癫痫持续状态
A.葡萄糖B.菊粉C.内生肌酐D.尿素血浆清除率等于70ml/min的物质是
为治寒饮伏肺之要药的中药是
盐酸西替利嗪咀嚼片【处方】盐酸西替利嗪5g甘露醇192.5g乳糖70g微晶纤维素61g预胶化淀粉10g硬脂酸镁17.5g苹果酸适量阿司帕坦适量8%聚维酮乙醇溶液100ml制
金属货币退出历史舞台后,各国都实行了纸币制度。纸币是信用货币,它本身没有价值。()
下列关于我国宗教政策的描述,正确的有()。
全脂乳粉的感官品质检验。 备拄:全脂乳粉感观特征可根话上表进行评分,总分大于90分。且滋味和气味的最低得分大于60分为特级;总分大于85分。且滋味和气味的最低得分大于55分为一级;总分大于80分,且滋味和气昧的最低得分大于50分为二级。
人们看见天上的浮云,就会想象出各种动物的形象。这是()。
设α1=(1,2,0)T和α2=(1,0,1)T都是方阵A的对应于特征值2的特征向量,又β=(一1,2,一2)T,则Aβ=_______.
作为建设单位考核监理单位对监理工作的执行情况的依据和基础性文件是()。
最新回复
(
0
)