首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b) 一f(a)=f’(ξ)(b一a). (Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且f’(x)=A,则f+’(0
(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b) 一f(a)=f’(ξ)(b一a). (Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且f’(x)=A,则f+’(0
admin
2017-04-24
67
问题
(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b) 一f(a)=f’(ξ)(b一a).
(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且
f’(x)=A,则f
+
’
(0)存在,且f
x
’
(0)=A.
选项
答案
(Ⅰ)取F(x)=f(x)一[*] 由题意知F(x)在[a,b]上连续,在(a,b)内可导,且 [*] 根据罗尔定理,存在ξ∈(a,b),使得F’(ξ)=[*]=0,即 f(b)一f(a)=f’(ξ)(b一a). (Ⅱ)对于任意的t∈(0,δ),函数f(x)在[0,t]上连续,在(0,t)内可导,由右导数定义及拉格朗日中值定理 [*] 故f
+
’
(0)存在,且f
+
’
(0)=A.
解析
转载请注明原文地址:https://kaotiyun.com/show/4yt4777K
0
考研数学二
相关试题推荐
函数f(x)=x3-3x+k只有一个零点,则k的范围为().
证明:当0<x<1时e-2x>(1-x)/(1+x).
求微分方程y"-2y’-e2x=0满足条件y(0)=1,y’(0)=1的解。
在一条公路的一侧有某单位的A、B两个加工点,A到公路的距离.AC为1km,B到公路的距离BD为1.5km,CD长为3km(如图4—2).该单位欲在公路旁边修建一个堆货场M,并从A、B两个大队各修一条直线道路通往堆货场M,欲使A和B到M的道路总长最短,堆货场
设A是n(n>1)阶矩阵,满足Ak=2E(k>2,k∈Z+),则(A+)k=().
设n阶矩阵A非奇异(n≥2),A*是A的伴随矩阵,则
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解.求正交矩阵Q和对角矩阵A,使得QTAQ=A.
设矩阵A与B相似,且求可逆矩阵P,使P-1AP=B.
(2009年试题,23)设二次型f(x1,x2,x3)=ax12+ax22+(a一1)x32+2x1x3一2x2x3.(I)求二次型f的矩阵的所有特征值;(Ⅱ)若二次型f的规范形为y12+y22,求a的值.
随机试题
迈克尔·波特教授把竞争战略划分为()等类型。
每逢经前或经期,巅顶头痛,烦躁易怒,口苦咽干,其辨证为:
某项工作有三项紧后工作,其持续时间分别为4d、5d、6d;其最迟完成时间分别为18d、16d、14d,本工作的最迟完成时间是( )d。
市场风险资本要求涵盖的风险范围包括()。I.全部的外汇风险Ⅱ.全部的商品风险Ⅲ.交易账户中的股票风险Ⅳ.交易账户中的利率风险
异议信息确实有误,但因技术原因无法修改时,征信服务中心应()。
甲是乙公司的研发人员,经长期研究,完成单位交付的研发任务,开发出了一种抗癌新药,现欲申请专利。以下关于该成果权利归属的说法中,正确的有()。
(2008年卷二第34题)根据反不正当竞争法的规定,下列哪些行为属于侵犯商业秘密的行为?
以高压甚至超高压将发电厂、变电站或变电站之间连接起来的送电网络称为()。
下列关于法律调整方法的表述,能够成立的是()。
简单商品生产的基本矛盾是()
最新回复
(
0
)