首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y=f(x)是第一象限内连接点A(0,1),B(1,0)的一段连续曲线,M(x,y)为该曲线上任意一点,点C为M在x轴上的投影,O为坐标原点。若梯形OCMA的面积与曲边三角形CBM的面积之和为,求f(x)的表达式。
设y=f(x)是第一象限内连接点A(0,1),B(1,0)的一段连续曲线,M(x,y)为该曲线上任意一点,点C为M在x轴上的投影,O为坐标原点。若梯形OCMA的面积与曲边三角形CBM的面积之和为,求f(x)的表达式。
admin
2020-03-16
78
问题
设y=f(x)是第一象限内连接点A(0,1),B(1,0)的一段连续曲线,M(x,y)为该曲线上任意一点,点C为M在x轴上的投影,O为坐标原点。若梯形OCMA的面积与曲边三角形CBM的面积之和为
,求f(x)的表达式。
选项
答案
由题意得 S
OCMA
=[*][1+f(x)],S
CBM
=∫
x
1
f(t)dt, 所以[*] 两边对x求导 [*] 即有 1+f(x)+xf’(x)一2f(x)=x
2
。 当x≠0时,化简得[*],即 [*] 此方程为标准的一阶线性非齐次微分方程,其通解为 [*] =x
2
+1+Cx。 曲线过点B(1,0),代入上式,得C=一2。所以 f(x)=x
2
+1—2x=(x一1)
2
。
解析
转载请注明原文地址:https://kaotiyun.com/show/jdA4777K
0
考研数学二
相关试题推荐
设n元线性方程组Ax=b,其中当a为何值时,该方程组有无穷多解,并求通解。
设α1,α2,α3,α4是4维非零列向量组,A=(α1,α2,α3,α4),A*是A的伴随矩阵,已知方程组Ax=0的基础解系为(1,0,2,0)T,则方程组A*x=0的基础解系为()
[2017年]若函数f(x)=在x=0处连续,则().
当x→1时,函数的极限().
[2007年]已知函数f(u)具有二阶导数,且f'(0)=l,函数y=y(x)由方程y一xey-1=1所确定.设z=f(lny—sinx),求.
[2005年]如图1.3.2.3所示,曲线C的方程为y=f(x),点(3,2)是它的一个拐点,直线l1与l2分别是曲线C在点(0,0)与(3,2)处的切线,其交点为(2,4).设函数f(x)具有三阶连续导数,计算定积分∫03(x2+x)f″′(x)dx
[2012年]曲线y=x2+x(x<0)上曲率为√2/2的点的坐标是_________.
(1999年)设矩阵A=矩阵X满足A*X=A-1+2X,其中A*是A的伴随矩阵,求矩阵X.
(99年)设f(x)是区间[0,+∞)上单调减少且非负的连续函数,an==∫1nf(x)dx(n=1,2,…),证明数列{an}的极限存在.
已知A,B为三阶非零矩阵,且。β1=(0,1,一1)T,β2=(a,2,1)T,β3=(b,1,0)T是齐次线性方程组Bx=0的三个解向量,且Ax=β3有解。求Bx=0的通解。
随机试题
脂酸β—氧化一个循环的产物不包括
黄芩含有黄芩苷、黄芩素、汉黄芩苷、汉黄芩素。其中黄芩苷是主要有效成分,具有抗菌、消炎作用,是中成药“注射用双黄连(冻干)”的主要成分。《中国药典》以黄芩苷为指标成分进行含量测定。黄芩苷属于
为了实现进度目标,应选择合理的合同结构,以避免过多的合同交界面而影响工程的进展,这属于进度控制的()。
公司营业用主要资产的抵押、出售或者报废一次超过该资产( )的情况,属于内幕信息。
Somechildrenwanttochallengethemselvesbylearningalanguagedifferentfromtheirparentsspeakathome.
某学校组织一次教工接力比赛,共准备了25件奖品分发给获得一、二、三等奖的职工。为设计获得各级奖励的人数,制定两种方案:若一等奖每人发5件,二等奖每人发3件,三等奖每人发2件,刚好发完奖品;若一等奖每人发6件,二等奖每人发3件,三等奖每人发1件,也刚好发完奖
In1999,thepriceofoilhoveredaround$16abarrel.By2008,ithad(21)______the$100abarrelmark.Thereasonsforthe
垄断高价和垄断低价并未否定价值规律,因为()
Onereasonhumanbeingscanthriveinallkindsofclimatesisthattheycancontrolthequalitiesoftheairintheenclosedsp
A、Thewayforwomentoquitsmoking.B、Thedefectsofsmokingtowomen.C、Themeritsofsmokinginmakingprogress.D、Themerits
最新回复
(
0
)