首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y=f(x)是第一象限内连接点A(0,1),B(1,0)的一段连续曲线,M(x,y)为该曲线上任意一点,点C为M在x轴上的投影,O为坐标原点。若梯形OCMA的面积与曲边三角形CBM的面积之和为,求f(x)的表达式。
设y=f(x)是第一象限内连接点A(0,1),B(1,0)的一段连续曲线,M(x,y)为该曲线上任意一点,点C为M在x轴上的投影,O为坐标原点。若梯形OCMA的面积与曲边三角形CBM的面积之和为,求f(x)的表达式。
admin
2020-03-16
116
问题
设y=f(x)是第一象限内连接点A(0,1),B(1,0)的一段连续曲线,M(x,y)为该曲线上任意一点,点C为M在x轴上的投影,O为坐标原点。若梯形OCMA的面积与曲边三角形CBM的面积之和为
,求f(x)的表达式。
选项
答案
由题意得 S
OCMA
=[*][1+f(x)],S
CBM
=∫
x
1
f(t)dt, 所以[*] 两边对x求导 [*] 即有 1+f(x)+xf’(x)一2f(x)=x
2
。 当x≠0时,化简得[*],即 [*] 此方程为标准的一阶线性非齐次微分方程,其通解为 [*] =x
2
+1+Cx。 曲线过点B(1,0),代入上式,得C=一2。所以 f(x)=x
2
+1—2x=(x一1)
2
。
解析
转载请注明原文地址:https://kaotiyun.com/show/jdA4777K
0
考研数学二
相关试题推荐
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2—α3,若β=α1+α2+α3+α4,求线性方程组Ax=β的通解。
设函数y=y(x)由参数方程(t>1)所确定,求
[2013年]求曲线x3一xy+y3=1(x≥0,y≥0)上的点到坐标原点的最长距离与最短距离.
[2011年](I)证明对任意的正整数,都有成立;(Ⅱ)设an=1+一lnn(n=1,2,…),证明数列{an}收敛.
[2012年]证明xln(一1<x<1).
[2013年]设函数f(x)=若反常积分∫1+∞f(x)dx收敛,则().
(94年)求微分方程y"+a2y=sinx的通解,其中常数a>0.
(2002年)已知矩阵A=[α1α2α3α4],α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2-α3.如果β=α1+α2+α3+α4,求线性方程组Aχ=β的通解.
设有矩阵Am×n,Bn×m,Em+AB可逆,(1)验证:Em+BA也可逆,且(En+BA)一1=Em—B(Em+AB)一1A;(2)设
设(χ-3sin3χ+aχ-2+b)=0,求a,b.
随机试题
政策方案的评估与择优主要有下列哪些方法?()
紫金锭的功用是( )
A.考虑糖尿病B.糖耐量减低C.葡萄糖耐量曲线低平D.低血糖现象E.正常口服葡萄糖耐量试验(OGTT)中2小时血浆葡萄糖<7.8mmol/L(140mg/d1)为
女,49岁。接触性出血3个月,白带有恶臭。妇科检查:阴道无异常,子宫颈前唇有质脆赘生物,最大径2cm,触之易出血;子宫大小正常,子宫旁无增厚及结节;附件无异常。该患者最可能的诊断为
根据《关于禁止商业贿赂行为的暂行规定》,下列购销行为,不属于行贿或受贿论处的有()。
高压燃气必须通过调压站才能送入()。
Internet的主要功能有()。
邀请招标的公开程度()公开招标的公开程度。
在排列图的每个直方柱右侧上方标上()描点,用实线连接成折线。
春节将至,车票不好买;想到除夕到家,机票贵;想避开高峰期回家,日期又不如意。这种矛盾心理是()。
最新回复
(
0
)