首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y=f(x)是第一象限内连接点A(0,1),B(1,0)的一段连续曲线,M(x,y)为该曲线上任意一点,点C为M在x轴上的投影,O为坐标原点。若梯形OCMA的面积与曲边三角形CBM的面积之和为,求f(x)的表达式。
设y=f(x)是第一象限内连接点A(0,1),B(1,0)的一段连续曲线,M(x,y)为该曲线上任意一点,点C为M在x轴上的投影,O为坐标原点。若梯形OCMA的面积与曲边三角形CBM的面积之和为,求f(x)的表达式。
admin
2020-03-16
83
问题
设y=f(x)是第一象限内连接点A(0,1),B(1,0)的一段连续曲线,M(x,y)为该曲线上任意一点,点C为M在x轴上的投影,O为坐标原点。若梯形OCMA的面积与曲边三角形CBM的面积之和为
,求f(x)的表达式。
选项
答案
由题意得 S
OCMA
=[*][1+f(x)],S
CBM
=∫
x
1
f(t)dt, 所以[*] 两边对x求导 [*] 即有 1+f(x)+xf’(x)一2f(x)=x
2
。 当x≠0时,化简得[*],即 [*] 此方程为标准的一阶线性非齐次微分方程,其通解为 [*] =x
2
+1+Cx。 曲线过点B(1,0),代入上式,得C=一2。所以 f(x)=x
2
+1—2x=(x一1)
2
。
解析
转载请注明原文地址:https://kaotiyun.com/show/jdA4777K
0
考研数学二
相关试题推荐
设n元线性方程组Ax=b,其中当a为何值时,该方程组有唯一解,并求x1。
设A为n阶方阵,任何n维列向量都是方程组的解向量,则R(A)=________。
[2001年]已知f(x)在(一∞,+∞)内可导,f′(x)=e,[f(x)一f(x一1)],则c=_________.
[2003年]设函数f(x)在(一∞,+∞)内连续,其导函数的图形如图1.2.5.1所示,则f(x)有().
[2015年]函数f(x)=在(一∞,+∞)内().
[2008年]设f(x)是区间[0,+∞)上具有连续导数的单调增加函数,且f(0)=1.对任意t∈[0,+∞),由直线x=0,x=t,曲线y=f(x)以及z轴所围成的曲边梯形绕x轴旋转一周生成一旋转体.若该旋转体的侧面面积在数值上等于其体积的2倍,求函
(2000年)设A=αβT,B=βTα,其中βT是β的转置,求解方程2B2A2χ=A4χ+B4χ+γ
计算定积分
设有矩阵Am×n,Bn×m,Em+AB可逆,(1)验证:Em+BA也可逆,且(En+BA)一1=Em—B(Em+AB)一1A;(2)设
设A,B均是n阶矩阵,且r(A)+r(B)<n,证明A,B有公共的特征向量.
随机试题
A.银翘散合麻杏石甘汤加减B.五虎场合葶苈大枣泻肺汤C.沙参麦冬汤D.人参五味子汤加减E.参附龙牡救逆汤肺炎风热闭肺证的治疗方剂为()
肝素的抗凝血作用机制是()。
会计凭证按其填制的程序和用途不同,可以分为()。
影响销售渠道选择的因素有()。
调解委员会调解与人民法院处理劳动争议的调解,其主要区别是()
教育的目的是社会需求的集中反映,它集中体现________。
1,3,6,(),15。
根据《中华人民共和国刑法修正案(九)》,下列说法正确的是()。
中世纪大学分为“先生大学”和“学生大学”,属于“学生大学”的是()
Whydoesthewomanneedthejob?
最新回复
(
0
)