首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y=y(x)(x>0)是微分方程2y"+y’-y=(4-6x)e-x的一个解,且=0, (Ⅰ)求y(x),并求y=y(x)到x轴的最大距离; (Ⅱ)计算∫0+∞y(x)dx。
设y=y(x)(x>0)是微分方程2y"+y’-y=(4-6x)e-x的一个解,且=0, (Ⅰ)求y(x),并求y=y(x)到x轴的最大距离; (Ⅱ)计算∫0+∞y(x)dx。
admin
2021-01-31
80
问题
设y=y(x)(x>0)是微分方程2y"+y’-y=(4-6x)e
-x
的一个解,且
=0,
(Ⅰ)求y(x),并求y=y(x)到x轴的最大距离;
(Ⅱ)计算∫
0
+∞
y(x)dx。
选项
答案
(Ⅰ)2y"+y’-y=(4-6x)e
-x
的特征方程为2λ
2
+λ-1=0,特征值为λ
1
=-1, λ
2
=1/2,则2y"+y’-y=0的通解为y=C
1
e
-x
+C
2
e
x/2
, 令2y"+y’-y=(4-6x)e
-x
的特解为y
0
=(ax
2
+bx)e
-x
,代入得a=1,b=0, 得原方程的通解为y=C
1
e
-x
+C
2
e
x/2
+x
2
e
-x
。 由[*]=0得y(0)=0,y’(0)=0,代入通解得C
1
=C
2
=0,故y=x
2
e
-x
, 由y’=(2x-x
2
)e
-x
=0得x=2, 当x∈(0,2)时,y’>0;当x>2时,y’<0,则x=2为y(x)的最大值点, 故最大距离为d
max
=y(2)=4e
-2
。 (Ⅱ)∫
0
+∞
y(x)dx=∫
0
+∞
x
2
e
x
dx=F(3)=2!=2。
解析
转载请注明原文地址:https://kaotiyun.com/show/d4x4777K
0
考研数学三
相关试题推荐
[*]
[2014年]设随机变量X的概率分布为P(X=1)=P(X=2)=在给定X=i的条件下,随机变量y服从均匀分布U(0,i),i=1,2.求期望E(Y).
设a是一个常数,则=__________·
微分方程(x2-1)dy+(2xy-cosx)dx=0满足初始条件y(0)=1的特解为________。
设X1,X2,…,Xn是取自总体X的一个简单随机样本,DX=σ2,是样本均值,则下列估计量的期望为σ2的是
对于任意两事件A和B,若P(AB)=0,则()
设三阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=一2,α1=(1,一1,1)T是A的属于λ1的一个特征向量。记B=A5一4A3+E,其中E为三阶单位矩阵。(Ⅰ)验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量;(Ⅱ)求矩阵B
设f(x)在[a,+∞)上二阶可导,f(a)<0,f’(a)=0,且f”(x)≥k(k>0),则f(x)在(a,+∞)内的零点个数为().
设f(x)在[a,+∞)上连续,f(a)<0,而f(x)存在且大于零.证明:f(x)在(a,+∞)内至少有一个零点.
设f(t)在[0,π]上连续,在(0,π)内可导,且∫0πf(x)cosxdx=∫0πf(x)sinxdx=0.证明:存在ξ∈(0,π),使得f’(ξ)=0.
随机试题
反映急性病毒性肝炎的血清酶是
慢性牙龈炎的病理变化不包括()
抗恶性肿瘤药的不良反应包括()。
与其他社会保险项目相比,下列不属于养老保险特征的是()。
变更令文件中“产生变更的原因和详细的变更内容说明”的主要内容是()。
背景资料:某机电安装公司承建一个石化项目的通风空调工程与设备安装工程,施工项目包括:地下车库排风兼排烟系统、防排烟系统、楼梯间加压送风系统、空调风系统、空调水系统、空调设备配电系统、动设备安装、静设备安装。该项目的所有施工内容及系统试运行已完毕,在进行竣
某上市公司拟聘请独立董事。根据公司法律制度的规定,下列人员中,不得担任该上市公司独立董事的有()。
办公部门或业务部门负责人根据来文情况提出初步处理意见,称为公文的()。
multistagerocket
HowlongwillAnnastillhavetostayinLondon?
最新回复
(
0
)