首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是三阶实对称矩阵,若对任意的三维列向量X,有XTAX=0,则( ).
设A是三阶实对称矩阵,若对任意的三维列向量X,有XTAX=0,则( ).
admin
2018-05-21
72
问题
设A是三阶实对称矩阵,若对任意的三维列向量X,有X
T
AX=0,则( ).
选项
A、|A|=0
B、|A|>0
C、|A|<0
D、以上都不对
答案
A
解析
设二次型f=X
T
AX
λ
1
y
1
2
+λ
2
y
2
2
+λ
3
y
3
2
,其中0为正交矩阵.取Y=
则f=X
T
AX=λ
1
=0,同理可得λ
2
=λ
3
=0,由于A是实对称矩阵,所以r(A)=0,从而A=O,选(A).
转载请注明原文地址:https://kaotiyun.com/show/d7r4777K
0
考研数学一
相关试题推荐
设α,β均为n维非零列向量,且αtβ≠o.设矩阵A=αβT一E,且满足方程A2一3A=4E,则αT2=________.
设,若存在秩大于1的三阶矩阵B使得BA=0,则An=________.
设总体X的概率密度为其中θ>0,θ,μ为未知参数,X1,X2,…,Xn为取自X的简单随机样本.试求θ,μ的最大似然估计量.
设A是秩为3的4阶矩阵,α1,α2,α3是非齐次线性方程组Ax=b的三个解.若α1+α2+α3+=(0,6,3,9)T,2α2一α3=(1,3,3,3)T,k为任意常数,则Ax=b的通解为()
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3.求矩阵A的特征值;
设总体X的概率密度函数为f(x)=其中λ>0为未知参数,又X1,X2,…,Xn为取自总体X的一组简单随机样本.求常数k.
某商场销售某种型号计算机,只有10台,其中有3台次品,现已售出2台.某顾客又来到该商场购买此种型号计算机.若该顾客买4台,以X,Y表示4台计算机中次品数与正品数,求4台中次品数的数学期望,并求协方差cov(X,Y).
设总体X的概率密度为其中θ∈(0,+∞)为未知参数X1,X2,X3为来自总体X的简单随机样本,令T=max{X1,X2,X3}.(Ⅰ)求丁的概率密度;(II)确定a,使得a丁为θ的无偏估计.
某试验性生产线每年一月份进行熟练工与非熟练工的人数统计,然后将熟练工支援其它生产部门,其缺额由招收新的非熟练工补齐.新、老非熟练工经过培训及实践至年终考核有成为熟练工.设第n年一月份统计的熟练工和非熟练工所占百分比分别为xn和yn,记成向量.(1)求(
某产品废品率为3%,采用新技术后对产品重新进行抽样检验,检查是否产品次品率显著降低,取显著水平为0.05,则原假设为H0:__________,犯第一类错误的概率为__________.
随机试题
A.梨形心B.靴形心C.烧瓶形心D.普大形心E.缩窄形心二尖瓣狭窄()
男,53岁,前胸区局部红肿热痛感染表现,无波动,体温37.4℃,红肿区中央可见一小黑点,挤压后有豆腐渣样物溢出,并有臭味。血常规:WBC12.0×109/L现应采取什么样的治疗
第Ⅱ相生物结合中参与反应的内源性成分有
下列情形中,保证人可以行使先诉抗辩权的是()。
“不闻不若闻之,闻之不若见之”,这句话反映的是【】
“华表”对于“()”相当于“()”对于“爱情”
毛泽东在《(共产党人)发刊词》中所说的“伟大的工程”是指()。
A.条件(1)充分,但条件(2)不充分.B.条件(2)充分,但条件(1)不充分.C.条件(1)和条件(2)单独都不充分,但条件(1)和条件(2)联合起来充分.D.条件(1)充分,条件(2)也充分.E.条件(1)和条件(2)单独都不充分,条件(1)和
在SQLServer2008中,如果数据库tempdb的空间不足,可能会造成一些操作无法进行,此时需要扩大tempdb的空间。下列关于扩大tempdb空间的方法,错误的是()。
Thefollowingqualificationsarerequiredfromthecandidatesfortheaboveposition.
最新回复
(
0
)