首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二维连续型随机变量(X,Y)在区域D={(x,y)|x2+y2≤1}上服从均匀分布. (Ⅰ)问X与Y是否相互独立; (Ⅱ)求X与Y的相关系数.
设二维连续型随机变量(X,Y)在区域D={(x,y)|x2+y2≤1}上服从均匀分布. (Ⅰ)问X与Y是否相互独立; (Ⅱ)求X与Y的相关系数.
admin
2018-06-14
89
问题
设二维连续型随机变量(X,Y)在区域D={(x,y)|x
2
+y
2
≤1}上服从均匀分布.
(Ⅰ)问X与Y是否相互独立;
(Ⅱ)求X与Y的相关系数.
选项
答案
依题意,(X,Y)的联合密度为 [*] (Ⅰ)为判断X与Y的相互独立性,先要计算边缘密度f
X
(x)与f
Y
(y). f
X
(x)=∫
-∞
+∞
f(x,y)dy=[*] (|x|≤1). 当|x|>1时,f
X
(x)=0. 类似地,有 f
Y
(y)=[*] 当x=y=0时,f(0,0)=[*].显然它们不相等,因此随机变量X与Y不是相互独立的. 或f
X
(x).f
Y
(y)≠f(x,y),故X与Y不相互独立. (Ⅱ)EX=∫
-∞
+∞
xf
X
(x)dx=∫
-1
1
x[*]dx=0. 在这里,被积函数是奇函数,而积分区间[一1,1]又是关于原点对称的区间,故积分值为零.类似地,有 EY=0, E(XY)=∫
-∞
+∞
∫
-∞
+∞
xyf(x,y)dxdy =[*]=0. 故 Cov(X,Y)=E(XY)一EXEY=0,ρ
XY
=[*]=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/dBW4777K
0
考研数学三
相关试题推荐
截至2010年10月25日,上海世博会参观人数超过了7000万人.游园最大的痛苦就是人太多.假设游客到达中国馆有三条路径,沿第一条路径走3个小时可到达;沿第二条路径走5个小时又回到原处;沿第三条路径走7个小时也回到原处.假定游客总是等可能地在三条路径中选择
设二维随机变量(X,Y)的概率密度为则随机变量Z=X-Y的方差DZ为_________.
设A为n(n≥3)阶非零实矩阵,Aij为A中元素aij的代数余子式,证明下列结论:(1)aij=AijATA=E且|A|=1;(2)aij=-AijATA=E且|A|=-1.
一汽车沿一街道行驶,需通过三个设有红绿信号灯的路口,每个信号灯为红或绿与其他信号灯为红或绿相互独立,且每一信号灯红绿两种信号显示的概率均为,以X表示该汽车首次遇到红灯前已通过的路口的个数,求X的概率分布.
设总体X的概率密度为又设X1,X2,…,Xn是来自X的一个简单随机样本,求未知参数θ的矩估计量
验收成箱包装的玻璃器皿,每箱24只装.统计资料表明,每箱最多有2只残品,且含0,1,2件残品的箱各占80%,15%,5%.现在随意抽取一箱,随意检验其中4只;若未发现残品则通过验收,否则要逐一检验并更换.试求(1)一次通过验收的概率;(2)通过验收的箱
设矩阵A=,且|A|=-1,A的伴随矩阵A*有特征值λ0,属于λ0的特征向量为α=[1,-1,1]T,求a,b,c及λ0的值.
求微分方程y"+2x(y’)2=0满足初始条件y(0)=1,y’(0)=1的特解.
设y=y(x),z=z(x)是由方程z=xf(z+y)和F(x,y,z)=0所确定的函数,其中f和F分别具有一阶连续导数和一阶连续偏导数,求
求下列极限:
随机试题
茯苓具有抗肿瘤活性的成分是
A.Ⅰ度烧伤B.浅Ⅱ度烧伤C.深Ⅱ度烧伤D.Ⅲ度烧伤E.轻度烧伤Ⅱ度烧伤面积在9%以下的是
A.浓缩丸B.滴丸C.蜡丸D.大蜜丸E.水丸溶散时限在1h内的丸剂是()。
防火分隔设施是指能在一定时间内阻止火焰蔓延,把整个建筑内部空间划分成若干个较小防火间的物体,对建筑物进行防火分区必须通过防火分隔设施来实现。下列属于防火分隔设施的是()。
关于机构投资者买卖基金产生的税收,下列说法正确的有()。①机构投资者购入基金、信托、理财产品等各类资产管理产品持有至到期,属于金融商品转让,计征增值税②机构投资者买卖基金份额暂免征收印花税③机构投资者在境内买卖基金份额获得差价收入
一家钢铁公司用自有资金并购了其铁矿石供应商,此项并购属于()。
清朝的福陵、昭陵在()。
下列属于元认知策略的是()。
甲盗割正在使用中的通讯电缆致通讯中断,既符合盗窃罪的犯罪构成,也符合破坏公用电信设施罪的犯罪构成。甲的犯罪属于()。(2009年单选18)
ThedoctorassuredSusanthatthepainwould______onehouraftershetookthemedicine.
最新回复
(
0
)