首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
讨论f(x,y)=在点(0,0)处的连续性、可偏导性及可微性.
讨论f(x,y)=在点(0,0)处的连续性、可偏导性及可微性.
admin
2019-04-22
79
问题
讨论f(x,y)=
在点(0,0)处的连续性、可偏导性及可微性.
选项
答案
因为[*]=0=f(0,0),即函数f(x,y)在点(0,0)处连续. 因为[*],所以f’
x
(0,0)=0,根据对称性得f’
y
(0,0)=0,即函数f(x,y)在(0,0)处可偏导. △z-f’
x
(0,0)x-f’
y
(0,0)y=f(x,y)-f’
x
(0,0)x-f’
y
(0,0)y=[*] 因为[*]不存在,所以函数f(x,y)在(0,0)不可微.
解析
转载请注明原文地址:https://kaotiyun.com/show/dDV4777K
0
考研数学二
相关试题推荐
设a是整数,若矩阵A=的伴随矩阵A*的特征值是4,-14,-14.求正交矩阵Q,使QTAQ为对角形.
设b>a>0,证明:
设其中f(x)在x=0处二阶可导,且f(0)=f’(0)=1。a、b为何值时,g(x)在x=0处可导。
求
设f(x)在[a,b上连续,且f(x)>0,证明:存在ξ∈(a,b),使得∫aξf(x)dx=∫ξbf(x)dx.
设奇函数f(x)在[一1,1]上具有二阶导数,且f(1)=1,证明:存在ξ∈(0,1),使得f’(ξ)=1;
确定常数a,使向量组α1=(1,1,a)T,α2=(1,a,1)T,α3=(a,1,1)T可由向量组β1=(1,1,a)T,β2=(一2,a,4)T,β3=(一2,a,a)T线性表示,但向量组β1,β2,β3不能由向量组α1,α2,α3线性表示。
求极限ln(1+χt)dt.
两种证券A,B的收益率为rA和rB,人们常用收益率的方差来衡量证券的风险,收益率的方差为正的证券称为风险证券.如果A,B均为风险证券,且|ρAB|≠1,证明A与B的任意投资组合P(允许卖空)必然也是风险证券;若|ρAB|=1,何时能得到无风险组合?并构造相
设f(x)是(一∞,+∞)上的连续非负函数,且求f(x)在区间[0,π]上的平均值.
随机试题
热导率是物质导热能力的标志,热导率值越大,导热能力越弱。()
[*]
肺源性心脏病肺动脉高压形成的最主要的因素是
中国甲公司与德国乙公司于2011年4月签订了购买一批食品的合同。合同采用CFR术语,由某航运公司的“大洋”轮承运,将该批货物从马塞运往中国青岛.甲公司向中国人民保险公司投保了水渍险。“大洋”轮在运输途中遇小雨,因货舱舱盖不严而使部分货物湿损。请问依2010
(2009年)采用滴定剂的电位分析法,滴定终点的确定是用()。
临界区是指并发进程中访问共享变量的
在考生文件夹下,打开文档WORD1.DOCX,按照要求完成下列操作并以该文件名(WORD1.DOCX)保存文档。将正文第二段(“黄山集泰山之雄伟……全人类的瑰宝。”)分为等宽的两栏;栏间加分隔线;在页面底端居中位置插入页码,样式为“普通数字2”。
Allthewisdomoftheages,allthestoriesthathavedelightedmankindforcenturies,areeasilyandcheaply【21】toallofus【22
Whatdoesthewomanmean?
Thegreenhouseeffectcausestroublebyraisingthetemperatureoftheplanet.The【1】riseisnotverymuch,buttheEarth’secos
最新回复
(
0
)