首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在区间[0,a]上单调增加并有连续的导数,且f(0)=0,f(a)=b,求证: 其中g(x)是f(x)的反函数.
设函数f(x)在区间[0,a]上单调增加并有连续的导数,且f(0)=0,f(a)=b,求证: 其中g(x)是f(x)的反函数.
admin
2019-03-12
59
问题
设函数f(x)在区间[0,a]上单调增加并有连续的导数,且f(0)=0,f(a)=b,求证:
其中g(x)是f(x)的反函数.
选项
答案
令F(a)=[*],对a求导得 F’(a)=f(a)+g[f(a)]f’(a)-af’(a)-f(a), 由题设g(x)是f(x)的反函数知g[f(a)]=a,故F’(a)=0,从而F(a),为常数.又F(0)=0,故F(a=0,即原等式成立.
解析
即证对a有函数恒等式
成立.
转载请注明原文地址:https://kaotiyun.com/show/dNP4777K
0
考研数学三
相关试题推荐
设B是3阶实对称矩阵,特征值为1,1,一2,并且α=(1,一1,1)T是B的特征向量,特征值为一2.求B.
设α是一个n维非零实列向量.构造n阶实对称矩阵A,使得它的秩=1,并且α是A的特征向量,特征值为非零实数λ.
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量组,满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3.求作可逆矩阵P,使得P一1AP为对角矩阵.
已知非齐次线性方程组有3个线性无关的解.求a,b的值和方程组的通解.
将下列函数展成麦克劳林级数并指出展开式成立的区间:(Ⅰ)ln(1+x+x2);(Ⅱ)arctan.
设函数u=f(x,y,z)有连续偏导数,且z=z(x,y)由方程xex一yey=zez所确定,求du.
设函数f(x)在[0,π]上连续,且∫0πf(x)dx=∫0πf(x)cosxdx=0.试证明:在(0,π)内至少存在两个不同的点ξ1,ξ2,使f(ξ1)=f(ξ2)=0.
已知随机变量X的概率密度为f(x)=Aex(B-x)(一∞<x<+∞),且E(X)=2D(X),试求:(Ⅰ)常数A,B之值;(Ⅱ)E(X2+eX);(Ⅲ)Y=|(X—1)|的分布函数F(y).
汽车加油站共有两个加油窗口,现有三辆车A,B,C同时进入该加油站,假设A、B首先开始加油,当其中一辆车加油结束后立即开始第三辆车C加油,假设各辆车加油所需时间是相互独立且都服从参数为A的指数分布.第三辆车C在加油站等待加油时间T的概率密度;
随机试题
王先生前些年下岗后,自己创办了一家公司。公司开始只有不到十个人,所有人都直接由王先生负责。后来,公司发展很快,王先生就任命了一个副总经理,由他负责公司的日常事务并向他汇报,自己不再直接过问各部门的业务。在此过程中,该公司沟通网络的变化过程是()。
A、bananaB、cabbageC、packageD、factoryA
下列哪种激素受体与激素结合后通过受体上的酪氨酸残基发生磷酸化而引起跨膜信息传递
LH促进下列哪组细胞分泌雄激素
患者,女,50岁,患甲状腺功能减退症2年,家属主诉患者记忆力严重减退、反应迟钝、经常猜疑别人,家人都无法和其正常交流和相处,该患者目前存在的主要心理问题是
城市公共电汽车首末站的规划用地面积,每辆标准用地90~100m2中包含()。
某进出口企业是在山东青岛海关注册登记的一家自理报关企业,若其没有在其他海关办理异地报关备案,那么下列属于它可以自行办理报关业务的口岸海关有()。
软件质量因素分为多个方面,软件的健壮性属于哪个方面的特性?()
有以下程序:INPUTTOAS=0IFA=10S=1ENDIFS=2?S假定从键盘输入的A值是数值型,则程序的运行结果是
Attractingandfeedingwildbirdsareentertainingactivitiesthathavelongbeenenjoyedbypeopleallovertheworld.Feeding
最新回复
(
0
)