首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设(Ⅰ),α1,α2,α3,α4为四元非齐次线性方程组BX=b的四个解,其中α1=, r(B)=2. (1)求方程组(Ⅰ)的基础解系; (2)求方程组(Ⅱ)BX=0的基础解系。 (3)(I)与(Ⅱ)是否有公共的非零解?若有公共解求出其公共解.
设(Ⅰ),α1,α2,α3,α4为四元非齐次线性方程组BX=b的四个解,其中α1=, r(B)=2. (1)求方程组(Ⅰ)的基础解系; (2)求方程组(Ⅱ)BX=0的基础解系。 (3)(I)与(Ⅱ)是否有公共的非零解?若有公共解求出其公共解.
admin
2018-01-23
68
问题
设(Ⅰ)
,α
1
,α
2
,α
3
,α
4
为四元非齐次线性方程组BX=b的四个解,其中α
1
=
,
r(B)=2.
(1)求方程组(Ⅰ)的基础解系;
(2)求方程组(Ⅱ)BX=0的基础解系。
(3)(I)与(Ⅱ)是否有公共的非零解?若有公共解求出其公共解.
选项
答案
(1)方程组(I)的基础解系为ξ
1
=[*]; (2)因为r(B)=2,所以方程组(Ⅱ)的基础解系含有两个线性无关的解向量, α
4
-α
1
=[*]为方程组(Ⅱ)的基础解系; (3)方程组(I)的通解为k
1
ξ
1
+k
2
ξ
2
=[*],方程组(Ⅱ)的通解为[*], [*]-k
2
=k
2
,取k
2
=k,则方程组(I)与方程组(Ⅱ) 的公共解为k(-1,1,1,1)
T
(其中k为任意常数).
解析
转载请注明原文地址:https://kaotiyun.com/show/dNX4777K
0
考研数学三
相关试题推荐
设α1,α2,α3,α4为四维列向量组,且α1,α2,α3线性无关,α4=α1+α2+2α3.已知方程组[α1一α2,α2+α3,一α1+aα2+α3]X=α4有无穷多解.(1)求a的值;(2)用基础解系表示该方程组的通解.
设A=,对A以列和行分块,分别记为A=[α1,α2,α3,α4]=[β1,β2,β3]T,其中≠0①,=0②,有下述结论:(1)r(A)=2;(2)α2,α4线性无关.(3)β1,β2,β3线性相关;(4)α1,α2,α3线性相关.上
设f(x)=则f(x)在点x=0处().
已知三元二次型f(x1,x2,x3)=XTAX,矩阵A的对角元素之和为3,且AB+B=0,其中 (1)用正交变换将二次型化为标准形,并写出所用的坐标变换;(2)求出此二次型;(3)若β=[4,一1,0]T,求Anβ.
设f(x)在[0,1]上有连续导数,且f(0)=0.试证明:至少存在一点η∈[0,1],使f′(η)=2f(x)dx.
设n阶矩阵A的各行元素之和均为零,且A的秩为n-1,则线性方程组AX=0的通解为__________.
已知an=x2(1一x)ndx,证明级数an收敛,并求这个级数的和.
设α1,α2,α3,α4,α5都是四维列向量,A=(α1,α2,α3,α4),非齐次线性方程组Ax=α5有通解kξ+η=k(1,一1,2,0)T+(2,1,0,1)T,则下列关系式中不正确的是()
随机试题
特发性血小板减少性紫癜行脾切除的指征是
“临睡前”的外文缩写为
图5—3—2(a)所示圆轴抗扭截面模量为Wt,切变模量为G,扭转变形后,圆轴表面A点处截取的单元体互相垂直的相邻边线改变了γ角,如图所(b)示。圆轴承受的扭矩T为()。[2009年真题]
根据《建设工程质量管理条例》的规定,施工图必须经过审查批准,否则不得使用,某建设单位投资的大型工程项目施工图设计已经完成,该施工图应该报审的管理部门是()。[2012年真题]
在实施环境质量标准时,应结合所管辖区域环境要素的()和保护目的划分环境功能区。
()是20世纪90年代以来发展最为迅速的一类衍生产品。
企业可以使用固定资产在内的经济活动所产生的收入为基础进行折旧。()
说一件别人误解你的事情,并谈谈你是怎样处理的。
某消费者的效用函数为U=0.5+E2,其中U为效用,R为收益(千元)。他有1万元钱,如果存在银行里,年利率为2%,如果全部投资于股票,估计一年中有40%的概率获得8000元的投资收益,60%的概率损失5000元。(1)该消费者是风险爱好者、风险厌
雌性斑马和它们的幼小子女离散后,可以在相貌体形相近的成群斑马中很快又聚集到一起。研究表明,斑马身上的黑白条纹是它们互相辨认的标志,而幼小斑马不能将自己母亲的条纹与其他成年斑马区分开来。显而易见,每个母斑马都可以辨别出自己后代的条纹。上述论证采用了以下哪种论
最新回复
(
0
)