首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]二阶可导,|f(0)|≤a,|f(1)|≤a,|f"(x)|≤b,a,b为非负数,求证: c∈(0,1),有 |f’(c)|≤2a+b.
设f(x)在[0,1]二阶可导,|f(0)|≤a,|f(1)|≤a,|f"(x)|≤b,a,b为非负数,求证: c∈(0,1),有 |f’(c)|≤2a+b.
admin
2018-11-21
30
问题
设f(x)在[0,1]二阶可导,|f(0)|≤a,|f(1)|≤a,|f"(x)|≤b,a,b为非负数,求证:
c∈(0,1),有
|f’(c)|≤2a+
b.
选项
答案
考察带拉格朗日余项的一阶泰勒公式:[*]c∈(0,1),有 f(x)=f(c)+f’(c)(x—c)+[*]f"(ξ)(x一c)
2
, (*) 其中ξ=c+θ(x一c),0<θ<1. 在(*)式中,令x=0,得 f(0)=f(c)+f’(c)(一c)+[*]f"(ξ
1
)c
2
,0<ξ
1
<c<1; 在(*)式中,令x=1,得 f(1)=f(c)+f’(c)(1一c)+[*]f"(ξ
2
)(1一c)
2
,0<c<ξ
2
<1. 上面两式相减得 f(1)一f(0)=f’(c)+[*][f"(ξ
2
)(1一c)
2
一f"(ξ
1
)c
2
]. 从而f’(c)=f(1)—f(0)+[*][f"(ξ
1
)c
2
一f"(ξ
2
)(1一c)
2
],两端取绝对值并放大即得 |f’(c)|≤2a+[*]b[(1一c)
2
+c
2
]≤2a+[*]b(1一c+c)=2a+[*]b. 其中利用了对任何c∈(0,1)有(1一c)
2
≤1一c,c
2
≤c,于是(1一c)
2
+c
2
≤1.
解析
证明与函数的导数在某一点取值有关的不等式时,常常需要利用函数在某点的泰勒展开式.本题涉及证明|f’(c)|≤2a+
,自然联想到将f(x)在点x=c处展开.
转载请注明原文地址:https://kaotiyun.com/show/dZg4777K
0
考研数学一
相关试题推荐
设函数f(r)(r>0)有二阶连续导数,并设u=f()满足div(gradu)=.求u的一般表达式.
=___________,其中L为x2+2y2=1的正向.
设二维随机变量(X,Y)服从区域一1≤x≤1,0≤y≤2上的均匀分布,求二次曲面+2x1x2+2Xx1x3=1为椭球面的概率.
函数f(x,y)=arctan在点(1,0)处的梯度向量为()
已知(X,Y)在以点(0,0),(1,-1),(1,1)为顶点的三角形区域上服从均匀分布。(Ⅰ)求(X,Y)的联合密度函数f(x,y);(Ⅱ)求边缘密度函数fX(x),fY(y)及条件密度函数fX(x|y),fY|X(y|x);并问X与Y是否独立;(
从学校乘汽车到火车站的途中有3个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,并且概率都是。设X为途中遇到红灯的次数,求随机变量X的分布律、分布函数和数学期望。
证明
设z=则该函数在点(0,0)处()
如果f(x)在[a,b]上连续,无零点,但有使f(x)取正值的点,则f(x)在[a,b]上的符号为____________.
n为自然数.证明.∫02πcosnxdx=∫02πsinnxdx=
随机试题
女,45岁。突发剑突下绞痛,局部压痛,肌紧张,伴寒战、高热,黄疸12小时。该患者首选的治疗原则是
药品生产企业终止生产药品或者关闭的,《药品生产许可证》
下列有关含氯消毒剂的使用方法正确的是
A、 B、 C、 D、 E、 C
房室瓣关闭主要是由于
“孟母三迁”体现的德育方法是()
行政处罚包括以下形式()。
题干可以转换成()。
赶路的人,为了远方的目标,无意留心沿路的风光。许多其实并不比你追寻的东西逊色的路边风物,被你轻易地忽略过去了,待我们多年后明白过来时,已追悔莫及,而当你把赶路的心态转换成散步的心态,你就会发觉,得到有味,失去也有味;富有有味,清贫也自有味,失败也有味;热恋
设tany=x+y,则dy=________.
最新回复
(
0
)