首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]二阶可导,|f(0)|≤a,|f(1)|≤a,|f"(x)|≤b,a,b为非负数,求证: c∈(0,1),有 |f’(c)|≤2a+b.
设f(x)在[0,1]二阶可导,|f(0)|≤a,|f(1)|≤a,|f"(x)|≤b,a,b为非负数,求证: c∈(0,1),有 |f’(c)|≤2a+b.
admin
2018-11-21
15
问题
设f(x)在[0,1]二阶可导,|f(0)|≤a,|f(1)|≤a,|f"(x)|≤b,a,b为非负数,求证:
c∈(0,1),有
|f’(c)|≤2a+
b.
选项
答案
考察带拉格朗日余项的一阶泰勒公式:[*]c∈(0,1),有 f(x)=f(c)+f’(c)(x—c)+[*]f"(ξ)(x一c)
2
, (*) 其中ξ=c+θ(x一c),0<θ<1. 在(*)式中,令x=0,得 f(0)=f(c)+f’(c)(一c)+[*]f"(ξ
1
)c
2
,0<ξ
1
<c<1; 在(*)式中,令x=1,得 f(1)=f(c)+f’(c)(1一c)+[*]f"(ξ
2
)(1一c)
2
,0<c<ξ
2
<1. 上面两式相减得 f(1)一f(0)=f’(c)+[*][f"(ξ
2
)(1一c)
2
一f"(ξ
1
)c
2
]. 从而f’(c)=f(1)—f(0)+[*][f"(ξ
1
)c
2
一f"(ξ
2
)(1一c)
2
],两端取绝对值并放大即得 |f’(c)|≤2a+[*]b[(1一c)
2
+c
2
]≤2a+[*]b(1一c+c)=2a+[*]b. 其中利用了对任何c∈(0,1)有(1一c)
2
≤1一c,c
2
≤c,于是(1一c)
2
+c
2
≤1.
解析
证明与函数的导数在某一点取值有关的不等式时,常常需要利用函数在某点的泰勒展开式.本题涉及证明|f’(c)|≤2a+
,自然联想到将f(x)在点x=c处展开.
转载请注明原文地址:https://kaotiyun.com/show/dZg4777K
0
考研数学一
相关试题推荐
已知三阶矩阵A满足A3=2E,若B=A2+2A+E,证明B可逆,且求B-1.
微分方程y″+2y′+y=xe-x的特解形式为().
设A是n阶矩阵,α1,α2,…,αn是n维列向量,且αn≠0.若Aα1=α2,Aα2=α3,…,Aαn-1=αn,Aαn=0.(1)证明α1,α2,…,αn线性无关;(2)求A的特征值、特征向量.
若函数F(x,y,z)满足F″xx+F″yy+F″zz=0,证明其中Ω是光滑闭曲面S所围的区域,是F在曲面S上沿曲面S的外向法线的方向导数.
设平面π的方程为2x—y+z一2=0,直线l的方程为则π与l的位置关系是__________.
设x=2a+b,y=ka+b,其中|a|=1,|b|=2,且a⊥b.若以x和y为邻边的平行四边形面积为6,则k的值为_________.
设C为椭圆+(x2y+x)dy=_______.
设f(x)在[a,b]上可导,且f’+(a)>0,f’-(b)>0,f(a)≥f(b),求证:f’(x)在(a,b)至少有两个零点.
求arctanx带皮亚诺余项的5阶麦克劳林公式.
n为自然数.证明.∫02πcosnxdx=∫02πsinnxdx=
随机试题
电脑屏幕是由哪三种色光合成的()
Usingsubjunctivemood:Theydidn’tpackthegoodsproperly,sotheygotdamaged.
肾单位包括
男性,因交通事故致脾破裂。入院时血压80/60mmHg,脉搏120次/分,神志尚清,口渴,肤色苍白。尿少。估计失血量
“望色十法”中的“清”主
根据《合同法》的规定,租赁期限为()以上的,租赁合同应当采用书面形式。对于乙对玻璃墙的维修及其费用应如何处理?()。
“页眉和页脚”的设置使用了域功能,而插入页码则不是使用域功能。()
反倾销中的“正常价格”是如何规定的?
作为行政相对人,任何人,任何组织,任何团体不得阻碍政府职能的正常行使,这体现政府职能的()。
A.badlyB.becoinedafterC.refusetoD.from1782to1792A.Hetreatedhispoortenantsvery【T13】______B.wholived【T14】__
最新回复
(
0
)