首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
在区间[0,a]上|f"(x)|≤M,且f(x)在(0,a)内取得极大值. 证明:|f’(0)|+|f’(a)|≤Ma.
在区间[0,a]上|f"(x)|≤M,且f(x)在(0,a)内取得极大值. 证明:|f’(0)|+|f’(a)|≤Ma.
admin
2019-08-12
58
问题
在区间[0,a]上|f"(x)|≤M,且f(x)在(0,a)内取得极大值.
证明:|f’(0)|+|f’(a)|≤Ma.
选项
答案
f(x)在(0,a)内取得极大值,不妨设f’(C)=0. f’(x)在[0,c]与[c,a]之间分别使用拉格朗日中值定理, f’(C)一f’(0)=cf"(ξ
1
),ξ
1
∈(0,c), f’(a)一f’(C)一(a一c)f"(ξ
2
),ξ
2
∈(c,a), 所以 |f’(0)|+|f’(a)|=c|f"(ξ
1
)|+(a一c)|f"(ξ
2
)| ≤cM+(a一c)M=aM.
解析
转载请注明原文地址:https://kaotiyun.com/show/dcN4777K
0
考研数学二
相关试题推荐
设矩阵A的伴随矩阵矩阵B满足ABA-1=BA-1+3E,求B.
(09)设α,β为3维列向量,βT为β的转置.若矩阵αβT相似于,则βTα=_______.
(10)设A为4阶实对称矩阵,且A2+A=O.若A的秩为3,则A相似于
设A为n阶实矩阵,AT是A的转置矩阵,则对于线性方程组(Ⅰ):Ax=0和(Ⅱ):ATAx=0,必有
设A为m×n实矩阵,E为n阶单位矩阵,矩阵B=λE+ATA,试证:当λ>0时,矩阵B为正定矩阵.
设函数y(x)(x≥0)二阶可导,且y’(x)>0,y(0)=1.过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1一S2
设(Ⅰ)和(Ⅱ)是两个四元齐次线性方程组,(Ⅰ)为(Ⅱ)有一个基础解系(0,1,1,0)T,(-1,2,2,1)T.求(Ⅰ)和(Ⅱ)的全部公共解.
设常数a﹥0,积分,试比较I1与I2的大小,要求写明推导过程.
设f(x)和φ(x)在(一∞,+∞)上有定义f(x)为连续函数,且f(x)≠0,φ(x)有间断点,则()
(2000年试题,二)若则为().
随机试题
A.水样密度类圆形肿块,不发生强化B.低密度类圆形肿块,发生强化C.双侧均为软组织密度肿块,发生不同程度均匀强化D.密度不均匀肿块,内有脂肪性低密度灶E.较大软组织密度肿块,中心有不规则坏死、囊变,并呈不均匀强化肾上腺腺瘤
男,70岁。既往体健,10天前,曾应用庆大霉素抗感染治疗,尿量800ml,尿常规示Pro(+),可见颗粒管型,BUN18.8mmol/L,cr373μmol/L,Hb120g/L。导致急性肾衰的原因
一油船发生泄漏,把大量的折射率为n=1.2的石油泄漏在海面上,形成了一个很大面积的油膜,假定油膜厚度在某一区域中是均匀的,其厚度为450nm,则从上空飞行的直升机上看是什么波长的可见光反射最强()。
抵押担保方式的个人住房贷款在审核借款人担保材料时,应调查()。
个人经营类贷款主要特征,包括()。
2019年3月1日,甲上市公司(以下简称“甲公司”)因面临严重财务困难,公布重大资产重组方案,其部分要点如下:(1)甲公司将所属全部资产(包括负债)作价2.5亿元出售给本公司最大股东A;(2)A将其持有甲公司的35%股份全部协议转让给B
函数pi的功能是根据以下近似公式求π值:(π*π)/6=1+1/(2*2)+1/(3*3)+...+1(n*n)现在请你在下面的函数中填空,完成求π的功能。#include"math.h"{doubles=0.0;
友谊需要滋养。有的人用钱,有的人用汗,还有的人用血。友谊是很贪婪的,绝不会满足于餐风饮露。友谊是最简朴同时也是最奢侈的营养,需要用时间去灌溉。友谊必须述说,友谊必须倾听,友谊必须交谈的时刻双目凝视,友谊必须倾听的时分全神贯注。友谊有的时候是那样脆弱,一句不
Whichofthefollowingsentenceshasanobjectcomplement?
ForanygiventaskinBritaintherearemorementhanareneeded.StrongunionskeepthemthereinFleetStreet,homeofsomeLo
最新回复
(
0
)