首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
试用配方法化二次型 f(x1,x2,x3)=2x12+3x22+x32+4x1x2-4x1x3-8x2x3 为标准形和规范形,写出相应的可逆线性变换矩阵,并求二次型的秩及止、负惯性指数。
试用配方法化二次型 f(x1,x2,x3)=2x12+3x22+x32+4x1x2-4x1x3-8x2x3 为标准形和规范形,写出相应的可逆线性变换矩阵,并求二次型的秩及止、负惯性指数。
admin
2018-01-26
64
问题
试用配方法化二次型
f(x
1
,x
2
,x
3
)=2x
1
2
+3x
2
2
+x
3
2
+4x
1
x
2
-4x
1
x
3
-8x
2
x
3
为标准形和规范形,写出相应的可逆线性变换矩阵,并求二次型的秩及止、负惯性指数。
选项
答案
由于f中含有x
1
的平方项,故先把含x
1
的项进行配方,然后再把含x
2
的项进行配方,依次配方即可。即 f(x
1
,x
2
,x
3
)=2(x
1
2
+2x
1
x
2
-2x
1
x
3
)+3x
2
2
+x
3
2
-8x
2
x
3
=2(x
1
+x
2
-x
3
)
2
+x
2
2
-4x
2
x
3
2
-x
3
2
=2(x
1
+x
2
-x
3
)
2
+(x
2
-x
3
)
2
-5x
3
2
。 令 [*] 则把二次型f化成了标准形 f(x
1
,x
2
,x
3
)=2y
1
2
+y
2
2
-5y
3
2
。 所用的可逆线性变换矩阵为C=[*],可逆变换为x=Cy。 由以上结论可知,二次型f的规范形为f=z
1
2
+z
2
2
-z
3
2
,二次型的秩R(f)=3,正惯性指数为2,负惯性指数为1。
解析
转载请注明原文地址:https://kaotiyun.com/show/dcr4777K
0
考研数学一
相关试题推荐
设0<a<b,证明:
证明:当x>0时,(x2一1)Inx≥(x一1)2.
设f(x)在(一1,1)内二阶连续可导,且f"(x)≠0.证明:(1)对(一1,1)内任一点x≠0,存在唯一的θ(x)∈(0,1),使得f(x)=f(0)+xf’[θ(x)x];(2)
设连续型随机变量X的所有可能值在区间[a,b]之内,证明:(1)a≤EX≤b;(2)
设来自总体X的简单随机样本X1,X2,…,Xn,总体X的概率分布为其中0<θ<1.分别以v1,v2表示X1,X2,…,Xn中1,2出现的次数,试求未知参数θ的最大似然估计量;
设X和Y相互独立都服从0—1分布:P{X=1)=P{Y=1)=0.6.试证明:U=X+Y,V=X—Y不相关,但是不独立.
方程组的通解是__________.
已知r(A)=r1,且方程组Ax=α有解r(B)=r2,=R(B)=R2无解,设A=[α1,α2,…,αN],B=[β1β2……βn],且r(α1,α2……αn,β1β2……βn,β)=r,则()
|A|是n阶行列式,其中有一行(或一列)元素全是1,证明:这个行列式的全部代数余子式的和等于该行列式的值.
设随机变量X与Y相互独立,且都服从参数为1的指数分布,则随机变量的概率密度为__________.
随机试题
积分∫02|x一1|dx等于().
牛子宫全脱整复过程中不合理的方法是
鼓励肾盂肾炎病人多饮水是为了
下列关于申请注销登记的情形,说法不合理的是()。
关于地面找平施工的说法,正确的是:(2018年第97题)
从作业成本管理的角度来说,增值作业产生的成本才是增值成本,而非增值作业产生的成本是非增值成本。()
根据《中华人民共和国票据法》的规定,背书人在汇票上记载“不得转让”字样,其后手再背书转让的,将产生的法律后果是()。
ventureinvestment
在新冠肺炎疫情全球大暴发的背景下,美国前总统特朗普曾多次在新闻发布会上发表令科学家挠头的“外行话”,例如特朗普认为疫苗可以马上生产出来,并且在没有足够科学依据的情况下盲目推荐抗疟疾药物氯喹和羟氯喹,其言论还催生了美国传染病学专家福奇博士在白宫疫情通报会上的
网络进行数据传递的依据是()。
最新回复
(
0
)