首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设 (1)a,b为何值时,β不能表示为α1,α2,α3,α4的线性组合? (2)a,b为何值时,β可唯一表示为α1,α2,α3,α4的线性组合?
设 (1)a,b为何值时,β不能表示为α1,α2,α3,α4的线性组合? (2)a,b为何值时,β可唯一表示为α1,α2,α3,α4的线性组合?
admin
2019-08-23
17
问题
设
(1)a,b为何值时,β不能表示为α
1
,α
2
,α
3
,α
4
的线性组合?
(2)a,b为何值时,β可唯一表示为α
1
,α
2
,α
3
,α
4
的线性组合?
选项
答案
令 x
1
α
1
+x
2
α
2
+x
3
α
3
+x
4
α
4
=β (*) [*] (1)当a=一1,b≠0时,因为r(A)=2≠[*]=3,所以方程组(*)无解,即β不能表示 为α
1
,α
2
,α
3
,α
4
的线性组合; (2)当a≠一1时,β可唯一表示为α
1
,α
2
,α
3
,α
4
的线性组合.
解析
转载请注明原文地址:https://kaotiyun.com/show/dlc4777K
0
考研数学一
相关试题推荐
设函数f(x,y)可微,且f(1,1)=1,fx’(1,1)=a,fy’(1,1)=b。又记φ(x)=f{x,f[x,f(x,x)]},则φ’(1)=__________。
设L是平面单连通有界区域σ的正向边界线,且L不经过原点。n0是L上任一点(x,xy)处的单位外法线向量。设平面封闭曲线L上点(x,y)的矢径r=xi+yj,r=|r|;θ是n0与r的夹角,试求
向量场u(x,y,z)=xy2i+yezj+xln(1+z2)k在点P(1,1,0)处的散度divu=____________。
假设二维随机变量(X1,X2)的协方差矩阵为∑=,其中σij=Cov(Xi,Xj)(i,j=1,2),如果X1与X2的相关系数为ρ,那么行列式|∑|=0的充分必要条件是()
向量组α1=(1,—2,0,3)T,α2=(2,—5,—3,6)T,α3=(0,1,3,0)T,α4=(2,—1,4,7)T的一个极大线性无关组是_______。
设g(x)=其中f(x)在x=0处二阶可导,且f(0)=f′(0)=1。a,b为何值时,g(x)在x=0处可导。
已知A=有三个线性无关的特征向量,则x=________。
设α1,α2,…,α3为线性方程组Ax=0的一个基础解系,β1=t1α1+t2α2,β2=t1α2+t2α3,…,βs=t1αs+t2α1,其中t1,t2为实常数。试问t1,t2满足什么条件时,β1,β2,…,βs也为Ax=0的一个基础解系。
三元一次方程组所代表的三个平面的位置关系为()
已知α1,α2,α3,是非齐次线性方程组Aχ=b的三个不同的解,那么下列向量α1-α2,α1+α2-2α3,(α2-α1),α1-3α2+2α3中能导出方程组Aχ=0的解向量共有()
随机试题
It’ssuchadifficultproblem______noonecanworkitout.
导致血性心包积液较常见的病因有哪些
骨髓检查原始粒细胞80%,早幼粒细胞8%,中幼粒细胞5%,红系7%,最有可能的诊断是
A.胃火上冲B.胃中寒冷C.气机郁滞D.脾胃阳虚E.胃阴不足
下列选项中,有关()问题的决策不属于非程序化决策.
以下不属于班杜拉对学生行为强化的方式是()。
学生性格差异主要是指性格的_______和性格的类型差异。
意识的()是意识的最基本特征。
建立健全社会保障制度,有利于
KeepingCutFlowers1Whileeverybodyenjoysfreshcutflowersaroundtheirhouse,fewpeopleknowhowtokeepthemforaslon
最新回复
(
0
)