首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,α3为线性方程组Ax=0的一个基础解系, β1=t1α1+t2α2,β2=t1α2+t2α3,…,βs=t1αs+t2α1, 其中t1,t2为实常数。试问t1,t2满足什么条件时,β1,β2,…,βs也为Ax=0的一个基础解系。
设α1,α2,…,α3为线性方程组Ax=0的一个基础解系, β1=t1α1+t2α2,β2=t1α2+t2α3,…,βs=t1αs+t2α1, 其中t1,t2为实常数。试问t1,t2满足什么条件时,β1,β2,…,βs也为Ax=0的一个基础解系。
admin
2018-12-29
78
问题
设α
1
,α
2
,…,α
3
为线性方程组Ax=0的一个基础解系,
β
1
=t
1
α
1
+t
2
α
2
,β
2
=t
1
α
2
+t
2
α
3
,…,β
s
=t
1
α
s
+t
2
α
1
,
其中t
1
,t
2
为实常数。试问t
1
,t
2
满足什么条件时,β
1
,β
2
,…,β
s
也为Ax=0的一个基础解系。
选项
答案
因为β
i
(i=1,2,…,s)是α
1
,α
2
,…,α
s
的线性组合,且α
1
,α
2
,…,α
s
是Ax=0的解,所以根据齐次线性方程组解的性质知β
i
(i=1,2,…,s)均为Ax=0的解。 从α
1
,α
2
,…,α
s
是Ax=0的基础解系知s=n—r(A)。 以下分析β
1
,β
2
,…,β
s
线性无关的条件: 设k
1
β
1
+k
2
β
2
+ … +k
s
β
s
=0,即 (t
1
k
1
+t
2
k
s
)α
1
+(t
2
k
1
+t
1
k
2
)α
2
+(t
2
k
2
+t
1
k
3
)α
3
+ … +(t
2
k
s—1
+t
1
k
s
)α
s
=0,由于α
1
,α
2
,…,α
s
线性无关,所以 [*] 又因系数矩阵的行列式 [*]=t
1
s
+(—1)
s+1
t
2
s
, 当t
1
s
+(—1)
s+1
t
2
s
≠0时,方程组(1)只有零解k
1
=k
2
= … =k
s
=0。因此当s为偶数且t
1
≠±t
2
,或当s为奇数且t
1
≠—t
2
时,β
1
,β
2
,…,β
s
线性无关,即为Ax=0的一个基础解系。
解析
转载请注明原文地址:https://kaotiyun.com/show/XXM4777K
0
考研数学一
相关试题推荐
随机地向半圆(a>0)内投掷一点,点落在半圆内的任何区域的概率与区域的面积成正比,则原点和该点连线与x轴正方向夹角小于的概率为_______.
n阶实对称矩阵A正定的充要条件是()
设(X,Y)的概率密度为f(x,y)=g(x)h(y),其中g(x)≥0,h(y)≥0,存在且不为0,则X与Y的概率密度fX(x),fY(y)分别为()
直线L:与平面Ⅱ:x-y-z+1=0的夹角为()
设A是n阶可逆矩阵,满足A2=E,则R(A-E)+R(A+E)=_________.
齐次线性方程组的基础解系中有()
已知曲线Y=f(x)在x=1处的切线方程为y=x一1,求极限
假设随机变量X和Y的联合概率密度为求X和Y的联合分布函数F(x,y);
将一枚均匀的硬币接连掷5次,结果反面至少出现了一次,试求:(1)正面出现次数X的概率分布;(2)正面出现的次数与反面出现的次数之比y的概率分布.
已知k(1,0,2)+k(0,1,-1)T是齐次方程组Ax=0的通解,又Aα+3α=0,其中β=(1,2,3)T,求矩阵A.
随机试题
在折光系统中,最主要的折光发生在
A、心率力口快B、低血钾、低血钠C、血压降低D、呼吸抑制E、心率缓慢病人每天尿量>2000ml,应注意观察有无()
(2008年真题)如图6-50所示作用水头相同的两管道1、2,两管的直径d1=2d2,沿程阻力系数相同,长度相同,不计局部损失,则通过的流量关系为()。
下列叙述()符合电网分层分区的概念和要求。
下列关于行政机关的行政行为特征的表述,正确的是()。
公安机关必须置于党委实际的、直接的领导之下,严禁把( )用于党内。
根据《中华人民共和国立法法》的规定,基层群众自治制度属于地方性法规可以规定的事项。()
赫塞.布兰查德的情境领导理论的主要内容。
3因为实对称矩阵不同特征值对应的特征向量正交,所以有6+3a+3—6a=0,a=3.
Teachersneedtobeawareoftheemotional,intellectual,andphysicalchangesthatyoungadultsexperience.Andtheyalsoneed
最新回复
(
0
)