首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶实对称矩阵,r(A)=n,Aij是A=(aij)n×n中元素aij的代数余子式(i,j=1,2,…,n),二次型 二次型g(x)=xTAx与f(x)的规范形是否相同?说明理由.
设A为n阶实对称矩阵,r(A)=n,Aij是A=(aij)n×n中元素aij的代数余子式(i,j=1,2,…,n),二次型 二次型g(x)=xTAx与f(x)的规范形是否相同?说明理由.
admin
2020-04-30
28
问题
设A为n阶实对称矩阵,r(A)=n,A
ij
是A=(a
ij
)
n×n
中元素a
ij
的代数余子式(i,j=1,2,…,n),二次型
二次型g(x)=x
T
Ax与f(x)的规范形是否相同?说明理由.
选项
答案
因为 (A
-1
)
T
AA
-1
=(A
T
)
-1
E=A
-1
, 所以A与A
-1
合同,于是g(x)=x
T
Ax与f(x)有相同的规范形.
解析
转载请注明原文地址:https://kaotiyun.com/show/dov4777K
0
考研数学一
相关试题推荐
[2005年]设α1,α2,α3均为三维列向量,记矩阵A=[α1,α2,α3],B=[α1+α2+α3,α1+2α2+4α3,α1+3α2+9α3].如|A|=1,那么|B|=______·
设A,B为n阶矩阵,|A|=2,|B|=一3,则|2A*B-1|=______.
设A是m×n矩阵,B是n×m矩阵,则().
设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B.证明B可逆;
[2014年]设,E为三阶单位矩阵.求方程组AX=0的一个基础解系;
[2013年]设,当a,b为何值时,存在矩阵C使得AC—CA=B,并求所有矩阵C.
[2008年]设α,β为三维列向量,矩阵A=ααT+ββT,其中αT,βT分别是α,β的转置.证明:若a,β线性相关,则秩(A)<2.
[2007年]设矩阵,则A3的秩为______.
设,A*是A的伴随矩阵,则(A*)-1=______.
随机试题
A.抑制肠内细菌生长,促进乳酸杆菌繁殖B.与游离氨结合,从而降低血氨C.与氨合成尿素和鸟氨酸,从而降低血氨D.被细菌分解成乳酸和乙酸,降低肠道的pHE.纠正氨基酸代谢不平衡,抑制假性神经递质形成支链氨基酸治疗肝性脑病的机制是
对急性肾小球肾炎最为合适的治疗措施是
对比增强磁共振血管造影所采用的序列是
A.医生对病人的呼叫或提问给予应答B.医生的行为使某个病人受益,但却给别的病人带来了损害C.妊娠危及母亲的生命时,医生给予引产D.医生给病人实施必要的检查或治疗E.医生满足病人的一切要求【2005年考试真题】
资产组合的收益-风险特征如图5-2所示,下列说法中错误的是( )。
对购房人资格的限制属于()。
云云在某超市第一次买到了一瓶过期的酸奶.第二次又买到了没有生产日期的糖果,她从此再也没有到那家超市买过东西,她觉得那里卖的都是劣质产品。以下哪项推理方式与题干相似?
SowhyisGooglesuddenlysointerestedinrobots?That’sthequestioneveryone’saskingafteritemergedthismonththatthein
Itissaidthatmorethanoneorganization______inthiswell-knowncriminalcase.
Allchildrenare【B1】______ofhavingfriends,althoughhighselfesteemreallyhelpsthem【B2】______,saysKathyNoll.Nollisthe
最新回复
(
0
)