首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3. 问A能否相似对角化?若能,请求出相似变换矩阵P与对角阵A;若不能,请说明理由.
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3. 问A能否相似对角化?若能,请求出相似变换矩阵P与对角阵A;若不能,请说明理由.
admin
2016-01-23
76
问题
设A为3阶矩阵,α
1
,α
2
,α
3
是线性无关的3维列向量,且满足Aα
1
=α
1
+α
2
+α
3
,Aα
2
=2α
2
+α
3
,Aα
3
=2α
2
+3α
3
.
问A能否相似对角化?若能,请求出相似变换矩阵P与对角阵A;若不能,请说明理由.
选项
答案
对于矩阵B,求方程组(E-B)x=0的基础解系,可得B的属于特征值λ=1的两个线性无关的特征向量η
1
=(-1,1,0)
T
,η
2
=(2,0,1)
T
. 求方程组(4E-B)x=0的基础解系,可得B的属于特征值λ=4的特征向量η
3
=(0,1,1)
T
. 令P
1
=(η
1
,η
2
,η
3
),则有[
解析
转载请注明原文地址:https://kaotiyun.com/show/dxw4777K
0
考研数学一
相关试题推荐
设向量组(Ⅰ):α1,α2,…,αs的秩为r1,向量组(Ⅱ):β1,β2,…,βs的秩为r2,且向量组(Ⅱ)可由向量组(Ⅰ)线性表示,则().
设n阶矩阵A=(α1,α2,…,αn),B=(β1,β2,…,βn),AB=(γ1,γ2,…,γn),记向量组(Ⅰ):α1,α2,…,αn;(Ⅱ):β1,β2,…,βn;(Ⅲ):γ1,γ2,…,γn,若向量组(Ⅲ)线性相关,则().
已知二元函数f(x,y)满足,且f(x,y)=g(u,v),若=u2+v2,求a,b。
设u=f(x,y,xyz),函数z=z(x,y),由exyz=∫xyzh(xy+z-t)dt确定,其中f连续可偏导,h连续,求.
设直线y=ax与抛物线y=x2所围成的图形面积为S1,它们与直线x=1所围成的图形面积为S2,且a<1.求上一问中结论成立所对应的平面图形绕x轴旋转一周所得的旋转体体积。
已知线性方程组(Ⅰ)a,b为何值时,方程组有解?(Ⅱ)方程组有解时,求出方程组的导出组的一个基础解系;(Ⅲ)方程组有解时,求出方程组的全部解.
求u=x2+y2+z2在约束条件下的最小值和最大值.
设对于半空间x>0内任意的光滑有向封闭曲面∑,都有xf(x)dydz-xyf(x)dzdx-e2xzdxdy=0,其中函数f(x)在(0,+∞)内具有连续的一阶导数,且,求f(x).
试求函数f(x,y)=4x2-6x+3y+1在平面区域D={(x,y)|x2+y2≤a2,a>0)上的平均值.
甲、乙两人分别拥有赌本30元和20元,他们利用投掷一枚均匀硬币进行赌博,约定如果出现正面,甲赢10元、乙10元.如果出现反面,则甲输10元、乙赢10元,分别用随机变量表示投掷一次后甲、乙两人的赌本,并求其概率分布和分布函数,画出分布函数的图形.
随机试题
湿热泻的主证是脾虚泻的主证是
患者,女性。曾有药物增生牙龈炎史,检查:左上颌中切牙横向折断,牙龈仍肥大、增生,形态不佳,存在假性牙周袋。其最佳的处理是
某建设项目的建设工期不足一年,则申领施工许可证时要求其到位资金原则上不得少于工程合同价的50%。()
施工进度计划调整的组织措施包括()。
X企业出租一台设备给Y企业,租期3个月,收取押金2000元,存入银行,则()。
课堂教学中,学生依靠形式、颜色、声音、感觉来进行思维的过程,是全面贯彻了()
StacyhadrecentlymovedfromNewYorkCitytoStoneybrook,Connecticut.Itwas【C1】______forhertomakenewfriendsbutshefin
洪某是独资企业老板,因欠他人巨额合同债务,私自将免税购买的两辆进口轿车以市场价160万充抵债务。洪某的行为构成()。
IsYourChild’sStomachPainAllinHisHead?Weallknowtherearetimesthatkidsseemtocomplain(51)astomachache
Whatdoes"turntheothercheek"imply?
最新回复
(
0
)