首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设(I)和(Ⅱ)是两个四元齐次线性方程组,(I)为 (Ⅱ)有一个基础解系(0,1,1,0)T,(一1,2,2,1)T.求(I)和(Ⅱ)的全部公共解.
设(I)和(Ⅱ)是两个四元齐次线性方程组,(I)为 (Ⅱ)有一个基础解系(0,1,1,0)T,(一1,2,2,1)T.求(I)和(Ⅱ)的全部公共解.
admin
2017-08-07
23
问题
设(I)和(Ⅱ)是两个四元齐次线性方程组,(I)为
(Ⅱ)有一个基础解系(0,1,1,0)
T
,(一1,2,2,1)
T
.求(I)和(Ⅱ)的全部公共解.
选项
答案
一种思路是构造一个线性方程组(Ⅲ),使得它也以η
1
,η
2
为基础解系.于是(Ⅲ)和(Ⅱ)同解,从而(I)和(Ⅱ)的公共解也就是(I)和(Ⅲ)的公共解,可以解(I)和(Ⅲ)的联立方程组来求得.例如(Ⅲ)可以是: [*] 这种思路的困难在于构造方程组(Ⅲ),在考场上不是每个考生都能很顺利完成的. 另一种思路为:(I)和(Ⅱ)的公共解都必定是(Ⅱ)的解,因此有c
1
η
1
+c
2
η
2
的形式.它又满足(I),由此可决定c
1
与c
2
应该满足的条件. 具体计算过程:将c
1
η
1
+c
2
η
2
=(一c
2
,c
1
+2c
2
,c
1
+2c
2
,c
2
)
T
,代入(I),得到 [*] 解出c
1
+c
2
=0.即当c
1
+c
2
=0时c
1
η
1
+c
2
η
2
也是(I)的解.于是(I)和(Ⅱ)的公共解为: c(η
1
一η
2
),其中c可取任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/dzr4777K
0
考研数学一
相关试题推荐
向量组a1,a2,…,am线性无关的充分必要条件是().
设3阶矩阵A=,若A的伴随矩阵的秩等于1,则必有().
设总体X的概率密度为f(x,θ)=,而X1,X2…,Xn是来自总体X的简单随机样本,则未知参数θ的矩估计量为_________.
(2012年试题,三)设二维离散型随机变量X、Y的概率分布为求Cov(X—Y,Y)与ρxy.
(1998年试题,一)设平面区域D由曲线及直线y=0,x=1,x=e2所围成,二维随机变量(X,Y)在区域D上服从均匀分布,则(X,Y)关于X的边缘概率密度在x=2处的值为___________.
(2010年试题,21)设二次型f(x1,x2,x3)=xTAx在正交变换x=Qy下的标准型为y12+y22,且Q的第三列为求A;
(2011年试题,20)设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,α)T线性表示(I)求a的值;(II)将β1,β2,β3用α1,α2,α3线性
(1997年试题,八)A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B.证明B可逆;
(2010年试题,20)设.已知线性方程组Ax=b存在两个不同解求λ,α;
投掷一枚硬币三次,观察三次投掷出现正反面情况,比如一种可能结果为HTT(表示第一次出现的是正面,第二次和第三次出现的都是反面).事件A表示恰好出现两次正面,写出A中所包含的所有可能结果;
随机试题
计量标准开展量值传递的范围是什么?
世界各国通常以______的变动率来衡量通货膨胀和物价上涨幅度。
EvenasAmericanshavebeengainingweight,theyhavecuttheiraveragefatintakefrom36to34percentoftheirtotaldietsin
根据有关规定,自理报检单位的报检人员凭( )办理报检手续。
资本公积金包括()。
【2014年河南三门峡.单选】老师在组织学生思考和讨论时,经常激励学生尽量列举所有可能的想法,这种思维训练方法是()。
甲将一台电脑赠与乙,乙在第一次使用时发现电脑存在故障,遂向甲要求支付修理费。下列选项正确的是()
红光、金辉、绿叶和彩虹公司分别出资50万、20万、20万、10万元建造一栋楼房,约定建成后按投资比例使用,但对楼房管理和所有权归属未作约定。对此,下列哪一说法是错误的?()[2010年法考真题]
AutomationThetermautomationwascoinedaround1946bytheautomobileindustrytodescribetheincreaseduseofautomatic
Daltonwonderedwhytheheavierandlightergasesintheatmospheredidnotseparateasoilandwaterdo.Hefinallyconcludedt
最新回复
(
0
)