首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设m×n矩阵A的秩r(A)=m<n,E为m阶单位阵,则
设m×n矩阵A的秩r(A)=m<n,E为m阶单位阵,则
admin
2018-07-31
31
问题
设m×n矩阵A的秩r(A)=m<n,E为m阶单位阵,则
选项
A、A的任意m个向量必线性无关.
B、A的任意一个m阶子式都不为0.
C、若BA=O,则B=O.
D、经初等行变换,可将A化为(E
m
|O)的形式.
答案
C
解析
由BA=O知A的每个列向量均为齐次线性方程组Bx=0的解向量,因r(A)=m,知A的列向量组的极大无关组含m个向量,故方程组Bx=0的基础解系至少含m个解向量,即m一r(B)≥m,→r(B)≤0,→r(B)=0,→B=O.故(B)正确.注意当r(A)=m<n时,要将A化为标准形,仅仅通过初等行变换是不行的,还要对A作初等列变换,才能化成标准形,故(D)不对。
转载请注明原文地址:https://kaotiyun.com/show/e5g4777K
0
考研数学一
相关试题推荐
设S(x)=∫0x|cost|dt.(1)证明:当nπ≤x<(n+1)π时,2n≤S(x)<2(n+1);(2)求.
设A为n阶正定矩阵.证明:对任意的可逆矩阵P,PTAP为正定矩阵.
设A为m×n阶实矩阵,且r(A)=n.证明:ATA的特征值全大于零.
设A是n阶矩阵,α1,α2,…,αn是n维列向量,且αn≠0,若Aα1=α2,Aα2=α3,…,Aαn—1=αn,Aαn=0.(1)证明:α1,α2,…,αn线性无关;(2)求A的特征值与特征向量.
设点M1(1,一1,一2),M2(1,0,3),M3(2,1,2),则点M3到向量的距离为___________.
设A=有三个线性无关的特征向量,且λ=2为A的二重特征值,求可逆矩阵P,使得P-1AP为对角矩阵.
设A是n阶方阵,A+E可逆,且f(A)=(E—A)(E+A)-1.证明:(1)[E+f(A)](E+A)=2E;(2)f[f(A)]=A.
设n阶方阵A的每行元素之和为a,|A|≠0,则(1)a≠0;(2)A-1的每行元素之和为a-1.
设方阵A1与B1合同,A2与B2合同,证明:合同。
设A=(aij)为n阶方阵,证明:对任意的n维列向量X,都有XTAX=0,A为反对称矩阵.
随机试题
正弦电压u(t)=141sin(314t+60°)v,则该正弦电压的频率为0.02s。()
关于输卵管积水的X线表现,哪一项不正确
有关肛管直肠周围脓肿手术治疗的描述中,下列哪项是正确的
藏象学说的形成基础,以下哪项不正确
贷款风险分类的会计原理的历史成本法的缺陷主要有()。
(2017年)当前,在国内上市公司中,终极股东对中小股东的“隧道挖掘问题”有多种表现形式,其中包括()。
信息校核的方法有()、溯源法、核对法、调查法、数据统计法。
警察的职能是指警察的()。
Thevideogameposesaworldamuchsimplerworldthanourown.whereinsuccessisveryclearlydefinedand,foratime.clearly
A、Theycandefeattheiropponenteffortlessly.B、Someonegavetheirinformationawaytotheirrival.C、Theiropponentthinksthe
最新回复
(
0
)