首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A=(α1,α2,…,αn)的前n一1个列向量线性相关,后n-1个列向量线性无关,且α1+2α2+…+(n一1)αn-1=0,b=α1+α2+…+αn. 证明方程组AX=b有无穷多个解;
设n阶矩阵A=(α1,α2,…,αn)的前n一1个列向量线性相关,后n-1个列向量线性无关,且α1+2α2+…+(n一1)αn-1=0,b=α1+α2+…+αn. 证明方程组AX=b有无穷多个解;
admin
2017-08-31
23
问题
设n阶矩阵A=(α
1
,α
2
,…,α
n
)的前n一1个列向量线性相关,后n-1个列向量线性无关,且α
1
+2α
2
+…+(n一1)α
n-1
=0,b=α
1
+α
2
+…+α
n
.
证明方程组AX=b有无穷多个解;
选项
答案
因为r(A)=n一1,又b=α
1
+α
2
+…+α
n
,所以[*]=n一1,即r(A)=[*]=n一1<n,所以方程组AX=b有无穷多个解.
解析
转载请注明原文地址:https://kaotiyun.com/show/eGr4777K
0
考研数学一
相关试题推荐
(2002年试题,十)设A,B为同阶方阵.当A,B均为实对称矩阵时,试证(1)的逆命题成立.
设λ1,λ2是矩阵A的两个特征值,对应的特征向量分别为α1,α2,则().
A是三阶矩阵,有特征值λ1=λ2=2,对应两个线性无关的特征向量为ξ1,ξ3,λ2=…2对应的特征向量是ξ3证明:任一三维非零向量β(β≠0)都是A2的特征向量,并求对应的特征值。
A是三阶矩阵,有特征值λ1=λ2=2,对应两个线性无关的特征向量为ξ1,ξ3,λ2=…2对应的特征向量是ξ3ξ2+ξ3是否是A的特征向量?说明理由;
设A为n阶实矩阵,AT为A的转置矩阵,则对于线性方程组(I)AX=0和(Ⅱ)ATAX=0必有()
(2001年试题,十)已知3阶矩阵A与三维向量x,使得向量组x,Ax,A2x线性无关,且满足A3x=3Ax一2A2x.计算行列式|A+E|.
(2001年试题,十)已知3阶矩阵A与三维向量x,使得向量组x,Ax,A2x线性无关,且满足A3x=3Ax一2A2x.记P=(x,Ax,A2x),求3阶矩阵B,使A=PBP-1;
设有向曲面S:z=x2+y2,x≥0,y≥0,z≤1,法向量与z轴正向夹角为钝角.求第二型曲面积分
已知向量β=(α1,α2,α3,α4)T可以由α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,一1,一3)T,α4=(0,0,3,3)T线性表出.把向量β分别用α1,α2,α3,α4和它的极大线性无关组线性表出.
已知向量β=(α1,α2,α3,α4)T可以由α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,一1,一3)T,α4=(0,0,3,3)T线性表出.求α1,α2,α3,α4应满足的条件;
随机试题
A.主观资料B.客观资料C.计划D.评估E.评价在“S-O-A-P”描述中,“P”代表
骨髓细胞中,属于多倍体细胞的是
以下所列外用或局部用运动员禁忌的药物中,不正确的是
我国现行的设计规范标准和五十年代的标准相比。有很大的发展。以下哪条规定没有发生变化和修改?[2004年第30题]
在实践中,通常将金融风险可能造成的损失分为()。
某人涉嫌诈骗被刑事拘留,公安机关提请人民检察院审查批捕,人民检察院审查决定批准逮捕,在批准逮捕决定书中对该人的准确称谓应该是()。
一个班有50名学生.他们的名字都是由2个或3个字组成的。将他们平均分为两组之后.两组的学生名字字数之差为10。此时两组学生中名字字数为2的学生数量之差为:
有三户人家,每家有一孩子,他们的名字:是:小萍(女)、小红(女)、小虎。孩子的爸爸是老王、老张和老陈;妈妈是刘蓉、李玲和方丽。对于这三家人,已知:(1)老王家和李玲家的孩子都参加了少年女子舞蹈队。(2)老张的女儿不是小红。(3
资本主义的生产过程是()
[*]
最新回复
(
0
)