首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知向量组与向量组具有相同的秩,且β3可由α1,α2,α3线性表示,求a,b的值.
已知向量组与向量组具有相同的秩,且β3可由α1,α2,α3线性表示,求a,b的值.
admin
2014-06-15
49
问题
已知向量组
与向量组
具有相同的秩,且β
3
可由α
1
,α
2
,α
3
线性表示,求a,b的值.
选项
答案
[详解1] 因为α
1
和α
2
线性无关,α
3
=3α
1
+2α
2
,所以向量组α
1
,α
2
,α
3
线性相关,且秩为2,α
1
,α
2
是它的一个极大线性无关组. 由于向量组β
1
,β
2
,β
3
与α
1
,α
2
,α
3
具有相同的秩,故β
1
,β
2
,β
3
线性相关,从而行列式 [*], 由此解得 a=3b. 又β
3
可由α
1
,α
2
,α
3
线性表示,从而可由α
1
,α
2
线性表示,于是向量组α
1
,α
2
,β
3
线性相 关,因此有 [*], 解得 2b—10=0. 于是得 a=15,b=5. [详解2] 因β
3
可由α
1
,α
2
,α
3
线性表示,故线性方程组 [*] 有解.对增广矩阵施以初等行变换: [*] 由非齐次线性方程组有解的条件知,[*],得b=5. 又因为α
1
和α
2
线性无关,α
3
=3α
1
+2α
2
,所以向量组α
1
,α
2
,α
3
的秩为2,而题设β
1
,β
2
,β
3
, 与α
1
,α
2
,α
3
同秩,从而有 [*] 由此解得 a=15.
解析
向量组α
1
,α
2
,α
3
不含任何参数,其秩可直接计算出来为2,从而向量组β
1
,β
2
,β
3
的秩也可确定为2.即β
1
,β
2
,β
3
线性相关,可导出其行列式为0,得到一个方程;为了求出两个参数,还需要一个方程,根据β
3
可由α
1
,α
2
,α
3
线性表示,而α
1
,α
2
,α
3
的秩为2,因此β
3
与α
1
,α
2
,α
3
中的某两个向量线性相关,又可得一方程.最终可解出两个参数.当然,本题也可直接根据β
3
可由α
1
,α
2
,α
3
线性表示,即对应的线性方程组有解,利用有解的判定求参数.
转载请注明原文地址:https://kaotiyun.com/show/eJ34777K
0
考研数学二
相关试题推荐
设方程yln(y-x)+cos(xy)-1=y确定函数y=y(x),则y”(0)=________。
常数项级数________。
设y=y(x)由确定,则=________。
函数f(x)在x=x0的某空心邻域内有界是存在的().
设y=f(x)满足y"+4y=2x,f(0)=0,f′(0)=0,试求f(x)的表达式.
设函数试讨论导函数f′(x)在x=0处的连续性.
设A是m×n矩阵,齐次线性方程组AX=0,r(A)=n—5,α1,α2,α3,α4,α5是该方程组5个线性无关的解向量,则方程组AX=0的一个基础解系是().
设f(x)满足f’(x)+f(x)=ne-xcosnx,n为正整数,f(0)=0.设an=∫02πf(x)dx,求级数的和.
设函数f(x)=其中g(x)二阶连续可导,且g(0)=1.(1)确定常数a,使得f(x)在x=0处连续;(2)求f′(x);(3)讨论f′(x)在x=0处的连续性.
利用极限存在准则证明:问本题能否用极限的四则运算法则求解?
随机试题
Thepricewasveryreasonable:Iwouldgladlyhavepaid______heasked.
需要HBV辅助才能增殖的病毒为
感染风疹病毒后最严重的后果是
7~12μm的微粒静脉注射后第一个能贮留的靶位是
皮下斑点隐隐稀少,色淡红,压之不退,伴诸虚症状,此为皮疹高出皮肤,时现时隐,搔之连片,此为
下列对企业所得税法规定的税收优惠政策的表述中,正确的有()。
Whichofthefollowingdoesnotbelongtothepost-listeningactivities?
一旦抚育者离开,儿童就会表现出类似哭闹行为,称为()。
依据材料1,从认识论上分析说明危难之中见精神。依据材料2,从价值观上分析说明危难之中见精神。
WherewillJean’ssistercomefrom?
最新回复
(
0
)