首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
,求a,b及可逆矩阵P,使得P-1AP=B.
,求a,b及可逆矩阵P,使得P-1AP=B.
admin
2018-01-23
64
问题
,求a,b及可逆矩阵P,使得P
-1
AP=B.
选项
答案
由|λE-B|=0,得λ
1
=-1,λ
2
=1,λ
3
=2,因为A~B,所以A的特征值为λ
1
=-1, λ
2
=1,λ
3
=2. 由tr(A)=λ
1
+λ
2
+λ
3
,得a=1,再由|A|=b=λ
1
λ
2
λ
3
=-2,得b=-2, [*] 由(-E-A)X=0,得ξ
1
=(1,1,0)
T
; 由(E-A)X=0,得ξ
2
=(-2,1,1)
T
; 由(2E-A)X=0,得ξ
3
=(-2,1,0)
T
[*] 由(-E-B)X=0,得η
1
=(-1,0,1)
T
; 由(E-B)X=0,得η
2
=(1,0,0)
T
; 由(2E-B)X=0,得η
3
=(8,3,4)
T
, [*] 由P
1
-1
AP
1
=P
2
-1
BP
2
,得(P
1
P
2
-1
) AP
1
P
2
-1
=B, 令P=P
1
P
2
-1
=[*],则P
-1
AP=B.
解析
转载请注明原文地址:https://kaotiyun.com/show/eNX4777K
0
考研数学三
相关试题推荐
已知产品某项指标X服从拉普拉斯分布,其密度为f(x)=e-|x-μ|,一∞<x<+∞,其中μ为未知参数.现从该产品中随机抽取3个,测得其该项指标值为1028,968,1007.(1)试用矩估计法求μ的估计;(2)试用最大似然估计法求μ的估计.
设,B是三阶非零矩阵,且BAT=0则秩r(B)=_________.
用配方法化二次型f(x,y,z)=x2+2y2+5z2+2xy+6yz+2zx为标准形,并求所用的可逆线性变换.
设A为三阶实对称矩阵,λ1=8,λ2=λ3=2是其特征值.已知对应λ1=8的特征向量为α1=[1,k,1]T,对应λ2=λ3=2的一个特征向量为α2=[-1,1,0]T.试求参数k及λ2=λ3=2的一个特征向量和矩阵A.
设f(x)在[a,b]上连续,且f(x)>0,又证明:(1)F′(x)≥2;(2)F(x)=0在[a,b]内有且仅有一个实根.
设A为三阶矩阵,α1,α2,α3为三维线性无关列向量组,且有Aα1=α2+α3,Aα2=α3+α1,Aα3=α1+α2.(1)求A的全部特征值;(2)A是否可对角化?
设A,B为三阶相似矩阵,且|2E+A|=0,λ1=1,λ2=一1为B的两个特征值,则行列式|A+2AB|=____________。
若向量组α1=(1,1,λ)T,α2=(1,λ,1)T,α3=(λ,1,1)T线性相关,则λ=_______.
设向量α=[a1,a2,…,an]T,β=[b1,b2,…,bn]T都是非零向量,且满足条件αβT=0,记n阶矩阵A=αβT,求:(1)A2;(2)A的特征值和特征向量;(3)A能否相似于对角阵,说明理由.
随机试题
螺纹的三要素是什么?
患者,男,40岁。家禽养殖户。因接触死禽后出现发热、咳嗽等症状,随后出现呼吸困难到村卫生室就诊,医生初步诊断为疑似人感染高致病性禽流感。该医生正确的处理措施是
半夏厚朴汤的组成药物中不含()
女,55岁,白带多,接触性出血3月余,3年前曾因宫颈糜烂行宫颈冷冻治疗。妇科检查:外阴阴道未见异常,宫颈肥大糜烂、质脆,子宫及双附件未见异常。为明确诊断,首选检查项目应是()
甲给自己的汽车在平安保险公司投保交强险后,又在泰康保险公司投保了第三者责任商业保险(人身损害赔偿限额20万元)。保险期间,甲驾驶该车将乙撞成重伤,假设依照现行法规定,乙可请求甲赔偿财产损失20万元,精神损害赔偿5万元。关于此案情,下列说法正确的是:(
目前,国务院规定的承担反垄断执法职责的机构包括()。
黄花岗起义
下列筹资活动中,不会加大财务杠杆作用的是()。(南京大学2012年真题)
中共三大
Warning:Holdingacellphoneagainstyourearorstoringitinyourpocketmaybehazardoustoyourhealth.Thisparaphrase
最新回复
(
0
)