首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足 Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3。 (Ⅰ)求矩阵B使得A(α1,α2,α3)=(α1,α2,α3)B; (Ⅱ)求矩阵A的特征值; (Ⅲ)求可逆矩阵
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足 Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3。 (Ⅰ)求矩阵B使得A(α1,α2,α3)=(α1,α2,α3)B; (Ⅱ)求矩阵A的特征值; (Ⅲ)求可逆矩阵
admin
2018-01-26
31
问题
设A为3阶矩阵,α
1
,α
2
,α
3
是线性无关的3维列向量,且满足
Aα
1
=α
1
+α
2
+α
3
,Aα
2
=2α
2
+α
3
,Aα
3
=2α
2
+3α
3
。
(Ⅰ)求矩阵B使得A(α
1
,α
2
,α
3
)=(α
1
,α
2
,α
3
)B;
(Ⅱ)求矩阵A的特征值;
(Ⅲ)求可逆矩阵P使得P
-1
AP为对角矩阵。
选项
答案
(Ⅰ)根据题设有 A(α
1
,α
2
,α
3
)=(Aα
1
,Aα
2
,Aα
3
)=(α
1
+α
2
+α
3
,2α
2
+α
3
,2α
2
+3α
3
) =(α
1
,α
2
,α
3
)[*] 于是 [*] (Ⅱ)令P
1
=(α
1
,α
2
,α
3
),因为α
1
,α
2
,α
3
线性无关,所以P
1
可逆,且由(Ⅰ)的结论P
1
-1
AP
1
=B,可知A~B。 由B的特征方程 |λE-B|=[*]=(λ-1)
2
(λ-4)=0 得矩阵B的特征值为1,1,4,由相似矩阵的性质可知矩阵A的特征值也是1,1,4。 (Ⅲ)由(Ⅱ)的结论知B的特征值分别是1,1,4,于是解(E-B)x=0,得矩阵B属于特征值1的线性无关的特征向量β
1
=(-1,1,0)
T
,β
2
=(-2,0,1)
T
;解(4E-B)x=0,得矩阵B属于特征值4的特征向量β
2
=(0,1,1)
T
。 令P
2
=(β
1
,β
2
,β
3
),则有 P
2
-1
BP
2
=[*] 将P
1
-1
AP
1
=B代入可得 P
2
-1
P
1
-1
AP
1
P
2
=[*] 令 P=P
1
P
2
=(α
1
,α
2
,α
3
)[*]=(-α
1
+α
2
,-2α
1
+α
3
,α
2
+α
3
), 则 P
-1
AP=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/eSr4777K
0
考研数学一
相关试题推荐
求微分方程y’’一2y’一e2x=0满足条件y(0)=1,y’(0)=1的特解.
设a>0,函数f(x)在[0,+∞)上连续有界,证明:微分方程y’+ay=f(x)的解在[0,+∞)上有界.
设则其以2π为周期的傅里叶级数在点x=π处收敛于_______.
设α1,α2,α3是四元非齐次线性方程组AX=b的三个解向量,且r(A)=3,α1=[1,2,3,4]T,α2+α3=[0,1,2,3]T,k是任意常数,则方程组AX=b的通解是()
求微分方程(3x2+2xy一y2)dx+(x2一2xy)dy=0的通解.
1一e-1积分区域如右图
设Ω由x2+y2+z2≤R2,z≥0所确定,则(x2+2y2+3z2)dv=_________.
设f(x)为连续函数,Ω={(x,y,z)l|x2+y2+z2≤t2,z≥0),∑为Ω的表面,Dxy为Ω在xOy平面上的投影区域,L为Dxy的边界曲线,当t>0时有
(1999年)y"一4y=e2x的通解为y=__________。
随机试题
试述中国由新民主主义向社会主义转变是历史的必然。
游离醌类多具有()
下列描述不正确的是
对第三代头孢菌素特点的叙述,哪项是错误的
对于高程放样中误差要求不大于±10mm的部位,应采用()。
为形成各类报表和报告,应当建立包括()的工作流程。
毛泽东在《矛盾论》中指出:矛盾问题的精髓是()。
材料一说市场经济只存在于资本主义社会。只有资本主义的市场经济,这肯定是不正确的。社会主义为什么不可以搞市场经济,这个不能说是资本主义。我们是计划经济为主,也结合市场经济,但这是社会主义的市场经济。虽然方法上基本上和资本主义社会的相似,但也有不同。
关于韦伯定律,下列说法正确的是()。
WhatprogresshasAfricancountriesmadeintermsofbusinessreform?Thereductionofthe______canleadtogreatereconomic
最新回复
(
0
)