首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足 Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3。 (Ⅰ)求矩阵B使得A(α1,α2,α3)=(α1,α2,α3)B; (Ⅱ)求矩阵A的特征值; (Ⅲ)求可逆矩阵
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足 Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3。 (Ⅰ)求矩阵B使得A(α1,α2,α3)=(α1,α2,α3)B; (Ⅱ)求矩阵A的特征值; (Ⅲ)求可逆矩阵
admin
2018-01-26
37
问题
设A为3阶矩阵,α
1
,α
2
,α
3
是线性无关的3维列向量,且满足
Aα
1
=α
1
+α
2
+α
3
,Aα
2
=2α
2
+α
3
,Aα
3
=2α
2
+3α
3
。
(Ⅰ)求矩阵B使得A(α
1
,α
2
,α
3
)=(α
1
,α
2
,α
3
)B;
(Ⅱ)求矩阵A的特征值;
(Ⅲ)求可逆矩阵P使得P
-1
AP为对角矩阵。
选项
答案
(Ⅰ)根据题设有 A(α
1
,α
2
,α
3
)=(Aα
1
,Aα
2
,Aα
3
)=(α
1
+α
2
+α
3
,2α
2
+α
3
,2α
2
+3α
3
) =(α
1
,α
2
,α
3
)[*] 于是 [*] (Ⅱ)令P
1
=(α
1
,α
2
,α
3
),因为α
1
,α
2
,α
3
线性无关,所以P
1
可逆,且由(Ⅰ)的结论P
1
-1
AP
1
=B,可知A~B。 由B的特征方程 |λE-B|=[*]=(λ-1)
2
(λ-4)=0 得矩阵B的特征值为1,1,4,由相似矩阵的性质可知矩阵A的特征值也是1,1,4。 (Ⅲ)由(Ⅱ)的结论知B的特征值分别是1,1,4,于是解(E-B)x=0,得矩阵B属于特征值1的线性无关的特征向量β
1
=(-1,1,0)
T
,β
2
=(-2,0,1)
T
;解(4E-B)x=0,得矩阵B属于特征值4的特征向量β
2
=(0,1,1)
T
。 令P
2
=(β
1
,β
2
,β
3
),则有 P
2
-1
BP
2
=[*] 将P
1
-1
AP
1
=B代入可得 P
2
-1
P
1
-1
AP
1
P
2
=[*] 令 P=P
1
P
2
=(α
1
,α
2
,α
3
)[*]=(-α
1
+α
2
,-2α
1
+α
3
,α
2
+α
3
), 则 P
-1
AP=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/eSr4777K
0
考研数学一
相关试题推荐
设有两个非零矩阵A=[a1,a2,…,an]T,B=[b1,b2,…,bn]T.计算ABT与ATB;
根据阿贝尔定理,已知在某点x1(x1≠x0)的敛散性,证明该幂级数的收敛半径可分为以下三种情况:(1)若在x1处收敛,则收敛半径R≥|x1一x0|;(2)若在x1处发散,则收敛半径R≤|x1一x0|;(3)若在x1处条件收敛,则收敛半径R=|x1一x
设a0,a1……an-1是n个实数,方阵若A有n个互异的特征值λ1,λ2,…,λn,求可逆阵P,使P-1AP=A.
设a0,a1……an-1是n个实数,方阵若λ是A的特征值,证明:ξ=[1,λ,λ2,…,λn-1]T是A的对应于特征值λ的特征向量;
设电子管寿命X的概率密度为若一台收音机上装有三个这种电子管,求:Y的分布函数.
设f(x)是连续函数,利用定义证明函数F(x)=可导,且F’(x)=f(x);
求心形线r=a(1+cosθ)的全长,其中a>0是常数.
求极限
若P(x,y),Q(x,y)在单连通域G内有一阶连续偏导数,且对G内任意简单闭曲线L有,则③曲线积分与路径无关;④P(x,y)dx+Q(x,y)dy是某个函数μ(x,y)的全微分。这四种说法中正确的是()。
设f(x)在[0,b]可导,f’(x)>0(x∈(0,b)),t∈[0,b],问t取何值时,图2—3中阴影部分的面积最大?最小?
随机试题
下述哪项是乳腺癌出现表面皮肤凹陷的机制
据《灵枢.本神》篇所述,因虑而处物谓之
男,28岁,胸部外伤致右侧第5肋骨骨折并发气胸,呼吸极度困难,发绀,出冷汗。检查:血压80/60mmHg,气管向左侧移位,右胸廓饱满,叩诊呈鼓音,呼吸音消失,颈胸部有广泛皮下气肿。现采用闭式胸膜腔引流。造成患者极度呼吸困难、发绀的主要原因是
红骨髓具有造血功能,黄骨髓不能造血,也没有潜在造血功能。()
案情:在一起放火案中,月亮服装厂的一仓库被他人放火焚烧,直接经济损失达60万元。事后经查明,放火者是另一服装厂的厂长。案件经公安机关侦查终结后,移送人民检察院审查起诉,月亮服装厂提出要委托诉讼代理人。人民检察院则说:公诉案件的被害人指的是自然人,不包括单位
检测报告日期的正确表述是()。
李某为其妻购买了10年期的两全保险,三年后,李某与其妻离婚,该离婚事件对保险合同的影响是()。
下列经济学理论或政策,与之对应不正确的是:
EversincesheappearedwithRichardGereinPrettyWoman,JuliaRobertshasbeenhailedasoneofthebrighteststarsincinema
Itisawisefatherthatknowshisownchild,buttodayamancanboosthispaternal(fatherly)wisdom—oratleastconfirmthat
最新回复
(
0
)