首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
根据阿贝尔定理,已知在某点x1(x1≠x0)的敛散性,证明该幂级数的收敛半径可分为以下三种情况: (1)若在x1处收敛,则收敛半径R≥|x1一x0|; (2)若在x1处发散,则收敛半径R≤|x1一x0|; (3)若在x1处条件收敛,则收敛半径R=|x1一x
根据阿贝尔定理,已知在某点x1(x1≠x0)的敛散性,证明该幂级数的收敛半径可分为以下三种情况: (1)若在x1处收敛,则收敛半径R≥|x1一x0|; (2)若在x1处发散,则收敛半径R≤|x1一x0|; (3)若在x1处条件收敛,则收敛半径R=|x1一x
admin
2015-08-17
100
问题
根据阿贝尔定理,已知
在某点x
1
(x
1
≠x
0
)的敛散性,证明该幂级数的收敛半径可分为以下三种情况:
(1)若在x
1
处收敛,则收敛半径R≥|x
1
一x
0
|;
(2)若在x
1
处发散,则收敛半径R≤|x
1
一x
0
|;
(3)若在x
1
处条件收敛,则收敛半径R=|x
1
一x
0
|.
选项
答案
根据阿贝尔定理,(1)(2)是显然的.对于(3),因幂级数[*]在点x
1
处收敛,则R≥|x
1
一x
0
|;另一方面,因幂级数[*]在点x
1
处条件收敛,则R≤|x
1
一x
0
|.因若不然,则该点是绝对收敛,而不是条件收敛,这与题设矛盾,于是,综合上述两方面得该幂级数的收敛半径R=|x
1
一x
0
|.
解析
转载请注明原文地址:https://kaotiyun.com/show/K1w4777K
0
考研数学一
相关试题推荐
极坐标下的累次积分∫0π/2dθ∫02cosθf(rcosθ,rsinθ)rdr等于().
设fn(χ)=Cn1cosχ-Cn2cos2χ+…+(-1)n-1Cnncosnχ,证明:对任意自然数n,方程fn(χ)=在区间(0,)内有且仅有一个根.
袋中有一个红球,两个黑球,三个白球,现在放回的从袋中取两次,每次取一个,若以X、Y、Z分别表示两次取球所取得的红、黑与白球的个数.求P(X=1|Z=0);
确定常数a,b,c的值,使=4.
一辆机场交通车载有25名乘客途经9个站,每位乘客都等可能在这9个站中任意一站下车(且不受其他乘客下车与否的影响),交通车只在有乘客下车时才停车,令随机变量Yi表示在第i站下车的乘客数,i=1,2,…,Xi在有乘客下车时取值为1,否则取值为0.求:(Xi
求矩阵A=的特征值与特征向量.
设3阶矩阵A的特征值为一1,1,1,对应的特征向量分别为α1=(1,一1,1)T,α2=(1,0,一1)T,α3=(1,2,一4)T,求A100.
设高为12m,水平截面为圆形的桥墩的载荷为p=90t(本身质量另加),材料的密度为2.5t/m3,允许压力为k=2940kN/m2,求桥墩上、下底面积和通过桥墩中心轴的垂直平面与桥墩所得截线的方程.
计算n阶行列式=_______.
利用数学期望的性质,证明方差的性质:(1)Da=0;(2)D(X+a)+DX;(3)D(aX)=a2DX.
随机试题
唐代有一位诗人贬谪江州后,寄情山水诗酒之间,继而皈依佛教,以“香山居士”自许。这位诗人是()。
中医学认为风湿性心脏瓣膜病的基本病因病机是
A.县级药品监督管理部门B.市级药品监督管理部门C.省级药品监督管理部门D.国家药品监督管理部门境内第三类医疗器械由哪个部门审批核发医疗器械注册证()。
法定节假日安排劳动者工作的,应支付不低于工资的()的工资报酬。
(2016·江苏)学习认知结构的不断分化所依靠的学习形式是下位学习。()
下列关于增量备份特点的描述中,错误的是
InTimBlack’scompany,whichpeopleusuallygetrelocatedabroad?
Haveyoueverwantedtotravelbackthroughtimeandseewhatlifewaslikeatthe【B1】______ofman?Well,museumscanmakehis
Themainreasonfordevelopingabettervocabularyistoreceiveandsendoutthoughtsbetter.Notjustwords—butideasthatwo
MedicalresearchersinBostonrecentlyfoundout【C1】______millionsofpeoplealreadyknew:drinkingisgoodforyou.Thedocto
最新回复
(
0
)