首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2006年] 四维向量组α1 =[1+a,1,1,1],α2 =[2,2+a,2,2],α3 =[3,3,a+3,3], α4 =[4,4,4,4+a].问a为什么数时,α1,α2,α3 ,α4 线性相关?在α1,α2,α3 ,α4 线性相关时求其一个
[2006年] 四维向量组α1 =[1+a,1,1,1],α2 =[2,2+a,2,2],α3 =[3,3,a+3,3], α4 =[4,4,4,4+a].问a为什么数时,α1,α2,α3 ,α4 线性相关?在α1,α2,α3 ,α4 线性相关时求其一个
admin
2019-05-10
39
问题
[2006年] 四维向量组α
1
=[1+a,1,1,1],α
2
=[2,2+a,2,2],α
3
=[3,3,a+3,3],
α
4
=[4,4,4,4+a].问a为什么数时,α
1
,α
2
,α
3
,α
4
线性相关?在α
1
,α
2
,α
3
,α
4
线性相关时求其一个极大线性无关组,并且把其余向量用该极大线性无关组线性表出.
选项
答案
(1)由∣α
1
,α
2
,α
3
,α
4
∣=0即可求出a;(2)将所求的a值代入(α
1
,α
2
,α
3
,α
4
)中并用初等行交换化为行最简形. α
1
,α
2
,α
3
,α
4
线性相关,即行列式∣α
1
,α
2
,α
3
,α
4
∣=0,而∣α
1
,α
2
,α
3
,α
4
∣=a
3
(a+10), 于是当a=0或一10时,α
1
,α
2
,α
3
,α
4
线性相关. 当a=0时,α
1
是α
1
,α
2
,α
3
,α
4
的极大无关组,且α
2
=2α
1
,α
3
=3α
1
,α
4
=4α
1
. 当a=一10时,用初等行变换求其极大无关组. [α
1
T
,α
2
T
,α
3
T
,α
4
T
]=[*] =[β
1
,β
2
,β
3
,β
4
]. 显然β
1
,β
2
,β
3
为β
1
,β
2
,β
3
,β
4
的一个极大线性无关组,且β
4
=一β
1
一β
2
一β
3
.由于矩阵的初等行变换不改变矩阵列向量组之间的线性关系,故α
1
,α
2
,α
3
是α
1
,α
2
,α
3
,α
4
的一个极大无关组,且α
4
=一α
1
一α
2
一α
3
.
解析
转载请注明原文地址:https://kaotiyun.com/show/ejV4777K
0
考研数学二
相关试题推荐
设f(χ)在[a,b]上连续,证明:∫abf(χ)dχ∫χbf(y)dy=[∫abf(χ)dχ]2.
设A是m×n阶矩阵,若ATA=O,证明:A=O.
证明:若矩阵A可逆,则其逆矩阵必然唯一.
设f(χ)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b),且f(χ)在[a,b]上不恒为常数.证明:存在ξ,η∈(a,b),使得f′(ξ)>0,f′(η)<0.
设f(χ)在[a,b]上连续,在(a,b)内可导(a>0),证明:存在ξ∈(a,b),使得=ξf′(ξ).
设f(u)可导,y=f(χ2)在χ0=-1处取得增量△χ=0.05时,函数增量△y的线性部分为0.15,则f′(1)=_______.
设f(χ)可导,y=f(cos2χ),当χ=-处取增量△χ=-0.2时,△y的线性部分为0.2,求f′().
设A为,n阶矩阵,若Ak-1α≠0,而Akα=0.证明:向量组α,Aα,…,Ak-1α线性无关.
设A为n阶矩阵,α1,α2,α3为n维列向量,其中α1≠0,且Aα1=α1,Aα2=α1+α2,Aα3=α2+α3,证明:α1,α2,α3线性无关.
随机试题
A.血小板减少B.脾肿大C.两者均有D.两者均无急性白血病可表现为
患有心动过缓的青光眼患者不宜选用的降压药是
废水处理中反渗透法属于( )。
出口打火机、点火枪类商品检验应当严格执行国家法律法规规定的标准进行检验,对进口国高于我国法律法规规定标准的,只按我国标准进行检验。( )
某商业企业2018年7月开业,2018年下半年销售额合计30万元,2018年7月至2019年5月,销售收入累计为520万元。截至2019年6月份,销售收入累计为600万元。企业的会计人员咨询税务师以下问题,请根据上述资料回复下列问题:企业最快应于什么时
第一次鸦片战争失败后,中国清政府被迫签订的不平等条约是()。
在管理策略上,现代人力资源管理是()。
控制工作的灵活性要求()。
当文本框中的内容发生了改变时,触发的事件名称是【】。
What’syourearliestchildhoodmemory?Canyourememberlearningtowalk?Ortalk?Thefirsttimeyou【C1】______thunderorwatch
最新回复
(
0
)